Intended for use inside of sol_equation objects.

sol_vonbert(
  t,
  Linf,
  k,
  t0,
  Linf_se,
  k_se,
  t0_se,
  reps = 1000L,
  ci = 0.95,
  method = "monte carlo"
)

Arguments

t

numeric: prediction times

Linf

numeric: Linf parameter estimate

k

numeric: k parameter estimate

t0

numeric: t0 parameter estimate

Linf_se

numeric: Linf parameter standard error estimate

k_se

numeric: k parameter standard error estimate

t0_se

numeric: t0 parameter standard error estimate

reps

integer: number of Monte-Carlo samples to draw

ci

numeric: confidence level

method

string: method to use for uncertainty propagation (only "monte carlo" supported at the moment)

Value

A tibble with columns allometric_value, allometric_value_lower, allometric_value_upper. If any of the standard error inputs are missing, NULL, or NA, the upper and lower estimates will be NA_real_

Examples

sol_vonbert(0:7, Linf = 80.7, Linf_se = 0.82, k = 0.25, k_se = 0.01, t0 = -2.31, t0_se = 0.01)
#> # A tibble: 8 x 3 #> allometric_value allometric_value_lower allometric_value_upper #> <dbl> <dbl> <dbl> #> 1 35.4 33.3 37.5 #> 2 45.4 43.0 47.8 #> 3 53.2 50.7 55.7 #> 4 59.3 56.9 61.7 #> 5 64.0 61.7 66.4 #> 6 67.7 65.4 69.9 #> 7 70.6 68.4 72.7 #> 8 72.8 70.7 74.8