R/utils.R
sol_vonbert.Rd
Intended for use inside of sol_equation
objects.
sol_vonbert( t, Linf, k, t0, Linf_se, k_se, t0_se, reps = 1000L, ci = 0.95, method = "monte carlo" )
t | numeric: prediction times |
---|---|
Linf | numeric: Linf parameter estimate |
k | numeric: k parameter estimate |
t0 | numeric: t0 parameter estimate |
Linf_se | numeric: Linf parameter standard error estimate |
k_se | numeric: k parameter standard error estimate |
t0_se | numeric: t0 parameter standard error estimate |
reps | integer: number of Monte-Carlo samples to draw |
ci | numeric: confidence level |
method | string: method to use for uncertainty propagation (only "monte carlo" supported at the moment) |
A tibble with columns allometric_value
, allometric_value_lower
, allometric_value_upper
. If any of the standard error inputs are missing, NULL
, or NA
, the upper and lower estimates will be NA_real_
sol_vonbert(0:7, Linf = 80.7, Linf_se = 0.82, k = 0.25, k_se = 0.01, t0 = -2.31, t0_se = 0.01)#> # A tibble: 8 x 3 #> allometric_value allometric_value_lower allometric_value_upper #> <dbl> <dbl> <dbl> #> 1 35.4 33.3 37.5 #> 2 45.4 43.0 47.8 #> 3 53.2 50.7 55.7 #> 4 59.3 56.9 61.7 #> 5 64.0 61.7 66.4 #> 6 67.7 65.4 69.9 #> 7 70.6 68.4 72.7 #> 8 72.8 70.7 74.8