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ABSTRACT

Aim Species distribution models have been widely used to tackle ecological,

evolutionary and conservation problems. Most species distribution modelling

techniques produce continuous suitability predictions, but many real applica-

tions (e.g. reserve design, species invasion and climate change impact assess-

ment) and model evaluations require binary outputs, and thresholds are

needed for these transformations. Although there are many threshold selection

methods for presence/absence data, it is unclear whether these are suitable for

presence-only data. In this paper, we investigate mathematically and empiri-

cally which of the existing threshold selection methods can be used confidently

with presence-only data.

Location We used real spatially explicit environmental data derived from the

western part of the state of Victoria, south-eastern Australia, and simulated

species distributions within this area.

Methods Thirteen existing threshold selection methods were investigated

mathematically to see whether the same threshold can be produced using either

presence/absence data or presence-only data. We further adopted a simulation

approach, created many virtual species with differing prevalences in a real land-

scape in south-eastern Australia, generated data sets with different proportions

of pseudo-absences, built eight types of models with four modelling techniques,

and investigated the behaviours of four threshold selection methods in these

situations.

Results Three threshold selection methods were not affected by pseudo-

absences, including max SSS (which is based on maximizing the sum of sensi-

tivity and specificity), the prevalence of model training data and the mean pre-

dicted value of a set of random points. Max SSS produced higher sensitivity in

most cases and higher true skill statistic and kappa in many cases than the

other methods. The other methods produced different thresholds from pres-

ence-only data to those determined from presence/absence data.

Main conclusions Max SSS is a promising method for threshold selection

when only presence data are available.

Keywords

Evaluation, lift curve, presence-only, ROC curve, sensitivity, species distribu-

tion model, specificity, threshold.

INTRODUCTION

Information concerning the distributions of species is funda-

mental to many ecological, evolutionary and conservation

problems (Graham et al., 2004; Guisan & Thuiller, 2005;

Franklin, 2009). Numerous modelling techniques have been

used to predict species distributions (e.g. Segurado & Ara�ujo,

2004; Elith et al., 2006; Thuiller et al., 2009). Most modelling

techniques, particularly the newer, more powerful techniques

(e.g. Maxent, boosted regression trees, random forest, artifi-
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cial neural networks), produce continuous (or at least non-

binary) predictions. Although continuous results convey

more information than binary outputs (Vaughan & Orm-

erod, 2005) and are potentially useful for many conservation

applications (e.g. Ara�ujo et al., 2002), binary outputs classi-

fied by the use of a model-specific threshold have become

integrated into applications such as biodiversity assessments,

reserve selection, and climate change impact assessments and

investment programmes by government agencies (Lobo et al.,

2008; Rebelo & Jones, 2010). In addition, binary predictions

are required to evaluate models when using accuracy

measures derived from confusion matrices (e.g. Phillips

et al., 2006; Pearson et al., 2007).

If both presence and absence data are available, there are

many approaches for selecting a threshold or cut-off value to

transform non-binary into binary predictions (Fielding &

Bell, 1997; Liu et al., 2005; Jim�enez-Valverde & Lobo, 2007;

Pearson, 2007; Freeman & Moisen, 2008; Nenz�en & Ara�ujo,

2011). For many species, however, reliable absence data are

not available (Pearson et al., 2007; Peterson et al., 2008) and

therefore conventional confusion matrices cannot be formed.

In this situation, it is commonly accepted that the methods

developed for presence/absence data are no longer applicable

(Jim�enez-Valverde & Lobo, 2007; Pearson et al., 2007), and

that selecting an appropriate threshold is problematic (Papes�
& Gaubert, 2007; Rebelo & Jones, 2010).

It is often believed that when only presence data are avail-

able, threshold selection rules can only be based on those

data. Phillips et al. (2006) used the minimum predicted

value for the training sites as the threshold, which was

termed ‘lowest presence threshold’ (LPT) by Pearson et al.

(2007), but this is extremely sensitive to low sample sizes

(Bean et al., 2012). It can also be considered a special case of

the fixed (or required) sensitivity method (Pearson et al.,

2004), where the required sensitivity is set at 100%.

However, the fixed sensitivity method requires an arbitrary

assignment of a level of sensitivity (e.g. 90%).

The sensitivity–specificity difference minimization method

has been used with presence/pseudo-absence data (e.g. Chefaoui

& Lobo, 2008), as would generally be used with presence/

absence data. However, because the determination of ‘specific-

ity’ is based on pseudo-absence rather than true absence data,

this approach is unlikely to generate a meaningful threshold (as

discussed in the next section). Pseudo-absences are the points

that are taken as absences but may not all be true absences.

Braunisch & Suchant (2010) used two threshold selection

methods in their study using presence-only data. One is

provided within the software biomapper (Hirzel et al.,

2002), which is based on the continuous P/E curve, where P

is the predicted frequency of evaluation points and E is the

expected frequency of evaluation points (which is actually

the predicted frequency of a sample of random points).

Specifically, they assigned ‘presence’ to all the points with

predicted suitability values larger than the value where P/E,

including its 90% confidence interval, exceeds 1. This

approach only guarantees that the transformed model is

better than the random model. The other approach is pro-

vided within the Maxent software package, and is based on

maximizing the sum of sensitivity and specificity (max SSS).

However, Braunisch & Suchant (2010) stated that ‘without

true absence data, specificity and commission error cannot

be calculated’ (p. 836), and consequently ‘threshold selection

methods for presence-only data are targeted at optimizing

the discrimination between predicted presence and random’

(pp. 836–837), and the ‘two approaches employed are both

based on this principle’ (p. 837).

In this paper, we prove mathematically that the threshold

selection method max SSS produces the same threshold using

either presence/absence data or presence-only data. This is

confirmed by simulation results using different modelling

techniques and different simulated species. Furthermore,

max SSS is an objective method, and it optimizes the

discrimination between presence and absence rather than

between presence and random point. In contrast, none of the

other threshold selection methods has all these properties.

MATERIALS AND METHODS

Theoretical consideration of the threshold selection

methods

More than a dozen threshold selection methods have been

used with presence/absence data (see Liu et al., 2005;

Jim�enez-Valverde & Lobo, 2007; Pearson, 2007; Freeman &

Moisen, 2008; Nenz�en & Ara�ujo, 2011). The fixed threshold

method is essentially arbitrary and is not considered in this

study (see Liu et al., 2005). The methods we evaluate

include: (1) training data prevalence (trainPrev), (2) mean

predicted value for a set of random points over the whole

study area (meanPred), (3) mid-point between the average

predicted values for the presences and the absences

(midPoint), (4) maximizing kappa (max kappa), (5) maxi-

mizing overall accuracy (max OA), (6) maximizing the F

measure (max F), (7) maximizing the sum of sensitivity and

specificity (max SSS), (8) minimizing the difference between

sensitivity and specificity (min DSS), (9) minimizing the dif-

ference between precision and recall (min DPR), (10) mini-

mizing the distance between the receiver operating

characteristic (ROC) curve and the point (0,1) (min D01),

(11) minimizing the distance between the precision–recall

curve and the point (1,1) (min D11), and (12) the predicted

and the observed prevalence equalization (equalPrev) (see

Liu et al., 2005, and Nenz�en & Ara�ujo, 2011, for detailed

explanation). In this section, we investigate mathematically

whether the same threshold is selected by each of these

methods using either presence/absence data or presence-only

data (see also Appendix S1 in Supporting Information).

Because trainPrev uses only training points, a unique thresh-

old should be obtained by this method for a specific model.

Similarly, meanPred uses only random points and, provided

that a large number of random points are used, a unique thresh-

old should be obtained by this method for a specific model.
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The test data can be a large random sample from the

study area, but a more realistic situation is where the test

data set contains two separate samples, with one randomly

sampled from all the presences and the other from the whole

study area. It can be proved that the same result will be

derived from these two sampling schemes (see Appendix S1).

For simplicity and convenience of explanation, we assume in

the following that the test data set is a large random sample.

For the purposes of this investigation, we also assume that a

species’ realized distribution and potential distribution com-

pletely overlap, and we consider the points within the realized

distribution as true presences and those outside as true

absences. In the Discussion, we extend this to the general situa-

tion where the potential distribution is larger than the realized

distribution. We will prove that the conclusions obtained here

will remain valid in the general situation if we assume that the

occupied and the unoccupied suitable areas are statistically sim-

ilar in terms of the environmental variables selected for model-

ling (i.e. they are environmentally similar).

Suppose p is the species’ prevalence within the test data (i.e.

the proportion of presences in the entire test data), but only

a part of the total presences accounting for a proportion

p � r (0 < r < p < 1) of the entire test data points are taken

as presences. The remaining presences, accounting for a pro-

portion r of the entire test data points, and the true absences,

accounting for a proportion 1 � p of the entire test data

points, are together considered pseudo-absences. Let M and

M′ represent the estimates of a metric calculated with pres-

ence/absence data and with presence-only data, respectively.

From the true presence component of the test data, we can

estimate the sensitivity (Se) of the model, which is appropri-

ate for both presence/absence data and presence-only data

because no absence data are required for its estimation, i.e.

Se = Se′. However, this is not the case for specificity (Sp),

which can only properly be estimated with presence/absence

data. The pseudo-specificity can be formulated as:

Sp0 ¼ ½rð1� SeÞ þ ð1� pÞSp�=ð1� pþ rÞ:
Thus,

Se0 þ Sp0 ¼ Seþ Sp0

¼ r=ð1� pþ rÞ þ ½ð1� pÞ=ð1� pþ rÞ�ðSeþ SpÞ:
Because r is constant for a data set and (1 � p)/

(1 � p + r) > 0, SSS′ ≡ Se′ + Sp′ is a monotonically increas-

ing function of SSS ≡ Se + Sp. Therefore, if a threshold max-

imizes SSS′, it will also maximize SSS, and vice versa. That

is, the same threshold value is selected by max SSS using

either presence/absence data or presence-only data.

We know that the vertical distance from a point on the

ROC curve to the diagonal line is

VDr ¼ Se� ð1� SpÞ ¼ Seþ Sp� 1 ¼ SSS� 1 ¼ TSS

(i.e. the true skill statistic) for presence/absence data, and

VDr0 ¼ Se0 � ð1� Sp0Þ ¼ Se0 þ Sp0 � 1 ¼ SSS0 � 1 ¼ TSS0

for presence-only data. Therefore, if a threshold maximizes

SSS′ and therefore VDr′ and TSS′, it will also maximize SSS

and therefore VDr and TSS, and vice versa. This means that

maximizing any of the measures SSS′, VDr′, TSS′, SSS, VDr

or TSS is equivalent for threshold selection.

A special type of presence-only data may be considered

where the absence component contains only random points

selected from the study area. For this type of data, the above

statements remain valid, and we use the terms lift curve and

VDl (see Liu et al., 2012, for an explanation of these terms)

instead of ROC curve and VDr.

From the following equations, we can conclude that the

four methods (max OA, max kappa, max F and min DSS)

are not suitable for presence-only data because maximizing

OA, kappa and F and minimizing DSS (= Se � Sp) may

not be equivalent to maximizing OA′, kappa′ and F′ and

minimizing DSS′ (= Se′ � Sp′) respectively:

OA0 ¼ OAþ rð1� 2SeÞ;

DSS0 ¼ ½ð1� pÞ=ð1� pþ rÞ�DSSþ ½r=ð1� pþ rÞ�ð2Se� 1Þ;

kappa0 ¼ kappa� r2pþ1=½ð1� EAÞ2 þ rð2pþ1 � 1Þð1� EAÞ�;

F0 ¼ F � 2rpþ1Se=½ðpþ pþ1Þðpþ pþ1 � rÞ�;

where EA = 1 − p + (2p − 1)p+1 and p+1 = pSe + (1 − p)

(1 − Sp).

For min D01, because

D01 ¼ ½ð1� SeÞ2 þ ð1� SpÞ2�1=2

and

D0
01 ¼ fð1� SeÞ2 þ ½rSeþ ð1� pÞð1� SpÞ�2=ð1� pþ rÞ2g1=2;

both higher Se and higher Sp tend to be obtained by mini-

mizing D01, but Se is likely to be compromised by minimizing

D′01. Therefore, different thresholds may be produced by this

method with presence/absence data and presence-only data.

For min D11, because

D11 ¼ ½ð1� PPVÞ2 þ ð1� SeÞ2�1=2

and

D0
11 ¼ ½1� ðPPV � rSe=pþ1Þ�2 þ ð1� SeÞ2� �1=2

;

both higher PPV (positive predictive value or precision) and

higher Se (sensitivity or recall) tend to be obtained by mini-

mizing D11, but Se may be compromised by minimizing D′11.

For min DPR, because DPR = PPV – Se and DPR′ =
[(p – r)/p]PPV – Se, minimizing DPR may be inconsistent

with minimizing DPR′. They may therefore produce different

thresholds.

For equalPrev, where the predicted prevalence is pSe +
(1 – p)(1 – Sp) ≡ PP, the observed prevalence is p when the

data set is used as presence/absence data and p � r when

the data set is used as presence-only data (i.e. presence/
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pseudo-absence data here). If r 6¼ 0, no threshold can be

found to satisfy both PP = p and PP = p � r. Therefore, dif-

ferent thresholds will be produced by this method using

presence/absence data and presence-only data.

Now we consider midPoint. Suppose the data set contains

n1 presences with model-predicted values xi (i = 1, 2, ���, n1)
and n0 absences with model-predicted values yi
(i = 1, 2, ���, n0). The mid-point value between

x ¼ Pn1
i¼1 xi=n1 and y ¼ Pn0

i¼1 yi=n0 is a ¼ ðx þ yÞ=2. If

we only use n1�m presences (e.g. xi, i = 1, 2, ���, n1 � m) as

true presences, and take the remaining presences and

the absences together as pseudo-absences, the new

mid-point value becomes a0 ¼ ðx0 þ y0Þ=2, where

x0 ¼ Pn1�m
i¼1 xi=ðn1 �mÞ and y0 ¼ Pn1

i¼n1�mþ1 xiþ
Pn0

i¼1 yi

� �
=

ðmþ n0Þ. For a large random sample, we can

assume x0 ¼ x ¼ Pn1
i¼n1�mþ1 xi=m, then a0 ¼ aþmðx�yÞ=

½2ðmþ n0Þ�. For a reasonable model, we can further assume

x > y; thus, a′ > a. Therefore, different thresholds may be

selected by this method using presence/absence data and

presence-only data.

Generation of virtual species

In this study, we used virtual species distributed in a

250 km 9 250 km area, in central–western Victoria, Austra-

lia. This study area spans a range of distinct geomorphologi-

cal and climatic contexts from near sea level to 1100 m in

elevation. It was primarily selected to incorporate environ-

mental heterogeneity. Its dimensions were chosen to expedite

data manipulation and iterative modelling. Eighteen environ-

mental variables, including bioclimatic, topographical and

radiometric variables (see Liu et al., 2012, for details), were

used in principal components analysis (PCA) to extract six

principal components (xj, j = 1, 2, ���, 6), which accounted

for more than 85% of the total variation. These principal

components were used for modelling. All of the environmen-

tal data were resolved to 1 km 9 1 km, creating a total of

nT = 62,500 cells.

Virtual species were simulated as follows. For each species,

we selected random values aj (j = 0, 1, ���, 6) and bjk
(j, k = 1, 2, ���, 6), which were uniformly distributed on the

interval (0,1). For site i (i = 1, 2, ���, nT) with environmental

data Xi = (xi1, xi2, ���, xi6), the suitability for the species was

calculated as

PðXiÞ ¼ 1

1þ e�f ðXiÞ ;

where

f ðXiÞ ¼ a0 þ
X6
j¼1

ajxij þ
X6

j;k¼1

bjkxijxik: (1)

To make the prevalence of the species a specific value p,

the pnT cells with the highest suitabilities were labelled as

presences, and all other cells as absences. Some examples of

the simulated species are shown in Appendix S2.

Eight types of models

Four modelling techniques were used: (1) a method based

on Mahalanobis distance (MD); (2) ecological niche factor

analysis (ENFA); (3) generalized additive model (GAM); and

(4) random forest (RF). For MD, only presence data were

used to build the models. For ENFA, both presence data and

random point data were required. Three types of models for

GAM and RF were built with presences/absences (GAM_PA

and RF_PA), presences/pseudo-absences filtered with MD

(GAM_POf and RF_POf, see the detailed description in the

next sub-section), and presences/pseudo-absences randomly

sampled from the study area (GAM_POr and RF_POr). The

same random-point training data were used for ENFA,

GAM_POr and RF_POr models. All calculations were carried

out in R 2.10.1 (R Development Core Team, 2010). The R

packages mgcv 1.6-1 and randomForest 4.5-34 were used

to implement GAM and RF, respectively. MD and ENFA

were implemented with our custom programming of the

algorithms provided by Farber & Kadmon (2003) and Hirzel

et al. (2002), respectively.

Preliminary results determined that the accuracy of MD

and ENFA models for the virtual species generated with

equation (1) was very low. Consequently, virtual species for

these two types of models were simulated with a simpler

linear function, i.e. setting all the coefficients bjk = 0

(j, k = 1, 2, ���, 6) in equation (1) (see Appendix S2 for the

examples of simulated species distributions).

Creation of different data sets

To verify the theoretical results, we conducted two groups of

simulations. For Group 1 simulations, we simulated the dis-

tribution of 1000 species at three levels of species prevalence

(p): 0.05, 0.25 and 0.75. Six data sets were generated for each

species: (1) training data [with 0.03 pnT presences and 0.03

(1�p) nT absences]; (2) auxiliary data [with 0.03 pnT
presences and 0.03 (1 � p) nT absences]; (3) test data [with

0.05 pnT presences and 0.05 (1 � p) nT absences]; (4)

pre-processed random-point training data (with 20,000 p

random points); (5) random-point training data (with 0.06

pnT random points); and (6) auxiliary random-point data

(with 0.03 nT random points). Stratified random sampling

was employed to generate the first three data sets, and com-

pletely random sampling was used to generate the last three

data sets. The first three data sets did not intersect with each

other, i.e. they were made sequentially without replacement,

while the last three data sets may intersect with each other

and with the first three data sets.

For Group 2 simulations, we only simulated one species

for each of the three levels of species prevalence, i.e. we only

simulated three species. We created four of the above six

data sets for each simulated species, including data sets 1, 3,
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4 and 5 as described above, which were model-training data

and test data. That is, we fixed the model-training data (and

therefore, the model itself) and test data. We then created

auxiliary data (data sets 2 and 6 in the above) for threshold

selection, and this was replicated 1000 times.

Model-filtered pseudo-absences were generated for both

groups of simulations. Training presences were used to build

an MD model and a threshold was set to ensure that the

sensitivity of this MD model was at least 0.95. The MD

model was applied to the pre-processed random-point train-

ing data. Sites with predicted suitability values lower than

the selected threshold were taken as candidate pseudo-

absences, from which the required number (0.06 pnT) of

points were randomly selected.

In this study, the number of model-filtered pseudo-

absences and the number of random points used for model

training were always twice the number of the presences in

the training data. Whereas others have employed more

pseudo-absences or random points (e.g. Ferrier et al., 2002;

Phillips et al., 2006; Raes & ter Steege, 2007), we found this

level of the pseudo-absence/true presence ratio to provide

consistently reliable results. Furthermore, because our

purpose was to investigate the performance of various

threshold selection methods and not the models themselves,

it was not deemed necessary to fine-tune all the models to

their optimal capacity.

The original auxiliary data were manipulated to make two

additional auxiliary data sets with different levels of ‘absence

pseudoness’ (the degree that the pseudo-absences are not

true absences; the more true presences are included in the

pseudo-absences, the higher the pseudoness). We randomly

selected specific proportions (25% and 75%) of the original

presences in the auxiliary data set and combined them with

the original true absences in that data set to create new

pseudo-absences. These pseudo-absences and the remaining

presences made up the two new auxiliary data sets.

Threshold selection

We have shown that max kappa and min D01 are theoreti-

cally unsuitable for presence-only data, whereas max SSS is

suitable, and we wanted to determine if the same holds for

empirical tests. We have also shown that unique threshold

can be selected with meanPred, but its ability to differentiate

between presence and absence remains unknown, and this

therefore needs to be established empirically. Therefore,

these four methods were chosen for further investigation. In

the presence/absence situation, max kappa is popular and

was recommended by Freeman & Moisen (2008) but not by

Liu et al. (2005) and Jim�enez-Valverde & Lobo (2007). The

other three methods were all recommended by Liu et al.

(2005).

The auxiliary data and the auxiliary random-point data

were used for threshold selection. The auxiliary data were

used for max kappa, and the auxiliary random point data

were used for meanPred. Two versions were calculated for

max SSS and min D01. The first version was obtained with

the auxiliary data and the data sets manipulated from them

(max SSSr and min Dr
01). The second version was obtained

with the auxiliary random-point data and the presence com-

ponent of the auxiliary data and the data sets created from

them (max SSSl and min Dl
01).

For the two versions of max SSS and min D01 to be com-

parable, the same presence data were always used for all

threshold selection methods at each level of absence pseud-

oness.

Model assessment

The selected thresholds were applied to independent test

data, and the accuracy of the binary predictions was evalu-

ated with four accuracy measures (see Liu et al., 2011, for

details): sensitivity (Se), specificity (Sp), true skill statistic

(TSS) and kappa.

RESULTS

The results identified similar trends for each of the eight

model types with respect to the selected thresholds. There

was a clear effect of absence pseudoness for max kappa and

min Dr
01, which frequently produced higher thresholds using

manipulated data than using unmanipulated data, and

almost no such effect for max SSSr, and there was no obvi-

ous effect of the number of presences for max SSSl and

min Dl
01 (Fig. 1, Appendix S3). At each level of species prev-

alence, the thresholds selected by max kappa and min Dr
01

always increased with increased absence pseudoness, and the

thresholds selected by max SSS (both max SSSr and

max SSSl) and min Dl
01 remained almost unchanged when

either absence pseudoness increased (for max SSSr), or the

number of known presences decreased (for max SSSl and

min Dl
01), and those selected by max SSSr and max SSSl

were almost the same (Fig. 2). Furthermore, when species

prevalence was very low (0.05), the thresholds selected by

max SSS and min D01 were always substantially different

from those selected by max kappa. When species prevalence

was not high, meanPred produced lower thresholds than the

other methods in most situations.

The accuracy of the binary results transformed with the

selected thresholds is shown in Figs 3 & 4. For each level of

species prevalence, the two versions of max SSS produced an

almost identical level of accuracy. When species prevalence

was low, max kappa almost always produced lower Se and

TSS and higher Sp and kappa, and meanPred usually pro-

duced higher Se and lower Sp. For any level of species preva-

lence, meanPred sometimes produced both lower TSS and

lower kappa, e.g. for ENFA at very high prevalence (Fig. 3).

When species prevalence was very low, max SSS and

min D01 produced very similar levels of accuracy. When spe-

cies prevalence was not low, max SSS almost always pro-

duced higher Se and TSS and relatively lower Sp than other

methods (the only exception is for MD at prevalence 0.75);
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when species prevalence was very high, it also produced

higher kappa.

The threshold selected using the training data was very

similar to that selected using independent data for each

threshold selection method and for each of the five types of

models (MD, ENFA, GAM_PA, GAM_POf and GAM_POr)

at each level of prevalence except GAM_POf and GAM_POr

at very low prevalence (Fig. 5). In the exceptional situations

(including GAM_POf and GAM_POr at very low prevalence

and RF_PA, RF_POf and RF_POr at almost all levels of

prevalence), the threshold selected using the training data

was very different from that selected using independent data

for each threshold selection method. In these situations,

meanPred performed much better than the other threshold

selection methods using training data.

DISCUSSION

Properties of the threshold selection methods

There are two main purposes for the conversion of continu-

ous model outputs to binary results. The first is for ‘real-

world’ applications (i.e. likely distributions or not), and the

second is for evaluating model accuracy using a confusion

table and measures derived from it. Thresholds should not be

chosen arbitrarily (Hernandez et al., 2006), and their deter-

mination should be attentive to the relative importance of the

two primary forms of errors: omission and commission.

Many species distribution models (SDMs) are developed

where reliable absence data are unavailable. In these cases,

only omission error can be estimated. Therefore, even if we

Figure 1 Difference of threshold between that calculated with manipulated data and unmanipulated data for three levels of species
prevalence (0.05, 0.25 and 0.75) from Group 1 simulations (i.e. 1000 different species at each level of prevalence) for four types of

models: ecological niche factor analysis (ENFA), generalized additive models built with presences/absences (GAM_PA), and generalized
additive and random forest models built with presences/pseudo-absences randomly sampled from the study area (GAM_POr and

RF_POr, respectively). For each individual plot, there are two sections, corresponding to two levels of absence pseudoness (left, 25%;
right, 75%). The codes for the five threshold selection methods (or variates) correspond to max kappa, max SSSr, min Dr

01, max SSSl

and min Dl
01, respectively. In each individual plot, the height of the horizontal dashed line is 0.
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Figure 2 Threshold selected using independent data for three levels of species prevalence (0.05, 0.25 and 0.75) from Group 2

simulations (i.e. one species at each level of prevalence) for four types of models: ecological niche factor analysis (ENFA), generalized
additive models built with presences/absences (GAM_PA), and generalized additive and random forest models built with presences/

pseudo-absences randomly sampled from the study area (GAM_POr and RF_POr, respectively). For each individual plot, there are three
sections corresponding to three levels of absence pseudoness (0%, 25% and 75% from left to right). The codes for the six threshold

selection methods (or variates) correspond to max kappa, max SSSr, min Dr
01, max SSSl, min Dl

01 and meanPred, respectively. In each
individual plot, the dashed horizontal line corresponds to the median of the meanPred.

Figure 3 Accuracy for ecological niche factor analysis (ENFA) models after the modelling results were transformed using the six
threshold selection methods (or variates) from Group 2 simulations (i.e. one species at each level of prevalence). See the explanation in

Fig. 2 for more information. TSS, true skill statistic; Sp, specificity; Se, sensitivity.
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understand the importance and implications of each of the

two types of errors, it is not possible to evaluate their relative

influence. To select an optimal threshold for a particular

application, a sound method should be adopted, and the

resulting threshold can be used at least as a benchmark and

adjusted to satisfy the specific purpose.

In this paper we attempt to characterize the approaches to

selecting thresholds for SDMs when only presence data are

Figure 4 Accuracy for GAM_POr models after the modelling results were transformed using the six threshold selection methods (or
variates) from Group 2 simulations (i.e. one species at each level of prevalence). See the explanation in Fig. 2 for more information.

Figure 5 Threshold selected using model training data for three levels of species prevalence (0.05, 0.25 and 0.75) from Group 2

simulations (i.e. one species at each level of prevalence). See the explanation in Fig. 2 for more information.
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available. In this context, what constitutes a sound threshold

selection method? First, the threshold should be objectively

selected. Second, at least for large samples, the threshold

selected should be identical irrespective of whether we are

using presence/absence data or presence-only data. Third,

discrimination between presence and absence rather than

between presence and random point should be optimized.

These are called objectivity, equality and discriminability

criteria, respectively.

It is obvious that the max SSS threshold selection method

satisfies the first criterion. We have proved mathematically

and demonstrated empirically that it also satisfies the second

criterion. Because max SSS is equivalent to maximizing the

true skill statistic (TSS), and TSS is a well-accepted accuracy

measure, discrimination between presence and absence

should be optimized with this method. It is also supported

by our simulation results, where both higher Se and higher

Sp were produced. This means that max SSS also satisfies the

third criterion. Therefore, max SSS is a promising threshold

selection method when only presence data are available.

We have also shown that trainPrev and meanPred are not

affected by the pseudo-absence, and a unique threshold

should be selected for each model by each of these two

methods. The objectivity and equality criteria are certainly

met by them, but the discriminability criterion is not guar-

anteed to be met. For example, meanPred usually produced

lower Se when species prevalence was very high. Although

we did not include trainPrev in our simulation study, its

performance can be easily inferred from the simulation

results, because the model training data prevalence is known

for every situation (except MD models which only used pres-

ence data). That is, for GAM_PA and RF_PA models, the

model training data prevalence was the same as the species

prevalence in the whole study area (i.e. 0.05, 0.25 and 0.75),

and for all the other models, the model training data preva-

lence (here the apparent prevalence) was 0.33. Therefore, the

thresholds produced by meanPred and trainPrev were very

similar for GAM_PA and RF_PA models at all three levels of

species prevalence and similar for the ENFA, GAM_POf,

GAM_POr, RF_POf and RF_POr models at high level of

species prevalence, and the thresholds selected by meanPred

were lower than those selected by trainPrev when species

prevalence was low and moderate. In the latter situation, the

thresholds selected by max SSS usually lay between those

selected by meanPred and trainPrev. However, meanPred

(and also trainPrev) usually produced lower Se when species

prevalence was high. Therefore, these two methods are not

as useful as max SSS.

We have stated that the fixed threshold method is not

objective and we have also theoretically proved that all the

other methods do not meet at least the equality criterion.

Therefore, none of these methods are suitable for presence-

only data.

In the introduction, we mentioned other threshold selec-

tion methods. The least presence threshold (LPT) method is

an objective method. It produces the highest sensitivity

(Se = 1) but very low specificity. Therefore, this method can-

not be recommended. The other threshold selection methods

mentioned in the introduction are also not recommendable,

including the required-sensitivity method and the method

based on Hirzel et al.’s (2006) continuous P/E curve.

In general, model accuracy increases as training data set

size increases (e.g. Stockwell & Peterson, 2002; Hernandez

et al., 2006; Wisz et al., 2008). For some taxa, especially rare

and restricted species, the limits to data availability may

require the entire data set to be used for model training (e.g.

Papes� & Gaubert, 2007), leaving no data for threshold selec-

tion. In this situation, if the results from training data are

comparable (to some extent) with those from independent

data, selecting a threshold with training data will provide a

method for these data-limited taxa. Our simulation results

show that the success of this approach can be dependent on

model type. The difference between the threshold selected

with training data and that selected with independent data

was substantial for the three types of RF models and was

slight for the other five types of models. This means that

training data cannot be used to select the threshold for RF

models, but can be used for the other five types of models

investigated. For RF models, the results from meanPred and

trainPrev were much better than those from the other

threshold selection methods using training data. We recom-

mend that trainPrev be used for RF_PA models, while for

RF_POf and RF_POr models, meanPred should be used

when species prevalence is moderate and high and trainPrev

should be used when species prevalence is very low.

We cannot, however, give a general recommendation on

how to choose a threshold with model training data for

other modelling techniques that were not investigated in this

study, and further investigation is needed.

Output represents potential distribution

We have previously suggested two distinct uses for trans-

forming the continuous modelling results into binary ones:

to assess model accuracy, and to provide binary models for

use in ‘real-world’ applications (e.g. conservation planning

and management). However, the question remains whether

the transformed binary output represents a species’ potential

or realized distribution. We believe that with the approaches

outlined in this paper, the transformed models represent spe-

cies’ potential distributions for almost all (large-scale) correl-

ative species distribution models. This is primarily a

reflection of our assumption that the sites in the potential

distributions are indistinguishable from those in the realized

distributions when examined against environmental variables

(usually abiotic) used in the model training and evaluation.

Using either the sites in the realized or potential distribu-

tions as true presences, the same threshold will be selected,

which can be explained as follows.

Suppose the study area consists of three types of areas:

occupied suitable areas (A) with proportion p�r, unoccupied

suitable areas (B) with proportion r, and unsuitable areas
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(C) with proportion 1�p. If a random sample is taken from

the study area, it is reasonable to assume that the propor-

tions of sampling points falling into the three types of areas

(A, B and C) are p � r, r and 1 � p, respectively. If we focus

on the potential distribution (Potential Scenario), the pres-

ences are from suitable areas (both occupied and unoccu-

pied, i.e. A ∪ B) with proportion p and absences are from

the unsuitable areas (i.e. C) with proportion 1 � p. If we

focus on the realized distribution (Realized Scenario), the

presences are from the occupied suitable areas (i.e. A) with

proportion p � r and the absences are from both the unoc-

cupied suitable and the unsuitable areas (i.e. B ∪ C) with

proportion 1 – p + r. According to our assumption that the

sites from the occupied and unoccupied suitable areas (i.e. A

and B) are environmentally similar, all these sites can simply

be considered as presences, and the sensitivity (Se) calculated

for the two scenarios (Realized and Potential scenarios)

should be the same. The absences for the Realized Scenario

(i.e. the unoccupied suitable and unsuitable sites B ∪ C)

include the absences for the Potential Scenario (i.e. the

unsuitable sites C) and the unoccupied suitable sites (i.e. B),

and the latter are just a part of presences. If sites from C (i.e.

the absences for the Potential Scenario) are considered true

absences, the sites from B ∪ C (i.e. the absences for the Real-

ized Scenario) can be considered as pseudo-absences (because

they include some presences). If we denote the Realized and

Potential scenarios with R and P, respectively, and use the

reasoning similar to that used in the Methods section, we

have Se(R) = Se(P), and Sp(R) = [r(1 − Se(P)) + (1 − p)Sp(P)]/

(1 − p + r). Thus, Se(R) + Sp(R) = r/(1 − p + r) + [(1 − p)/

(1 − p + r)](Se(P) + Sp(P)). Because (1 − p)/(1 − p + r) > 0,

SSS(R) [≡ Se(R) + Sp(R)] is a monotonically increasing function

of SSS(P) [≡ Se(P) + Sp(P)]. Therefore, maximizing SSS(R) (cal-

culated with the presences from the realized distribution) is

equivalent to maximizing SSS(P) (calculated with the pres-

ences from the potential distribution). In other words, the

same threshold will be selected using presence data from

either the potential distribution (i.e. all suitable areas,

although it is impossible in practice because we do not know

the unoccupied suitable areas) or the realized distribution

(i.e. the occupied suitable areas).

From this logic, it is clear that the predicted distribution

using the selected threshold represents the species’ potential

distribution. Without incorporating detailed information

about the biotic and anthropogenic factors that affect the

species distribution in model development, it is impossible

to predict the species’ realized distribution, because the

model always treats the occupied suitable areas and the

unoccupied suitable areas equally. Therefore, even if we use

presence data from the realized distribution to select the

threshold, the threshold can only possibly delimit the poten-

tial distribution. If an estimate of the realized distribution is

the primary objective for a particular application, then the

reclassified distribution using the selected threshold can be

post-processed with other ancillary information (regarding

species dispersal, biotic interaction and human modification

of the environment) through a series of steps (e.g. Phillips

et al., 2006; Guisan & Rahbek, 2011; Boulangeat et al., 2012).

The sampling assumption and simulating species

distributions

A critical point of this work is the assumption of random

sampling. That is, either the entire data set is a single ran-

dom sample from the whole study area, or it contains two

separate random samples with one randomly sampled from

all the presence points (i.e. random presences) and the other

randomly sampled from the whole study area (i.e. random

points). Certainly the latter sampling scheme is more realis-

tic. Under these two sampling schemes, max SSS produces

the same threshold as with known true presences and true

absences, provided the sample is large. However, the same

threshold cannot be guaranteed for small-sized samples.

Therefore, the small-sample-size effect needs to be further

investigated, as in Bean et al. (2012).

For the presence-only situation, this random sampling

assumption is almost always violated, but as we know, ran-

dom sampling in geographical space is not essential for

building species distribution models. Spatial bias in the

records may not be a problem if the data are not environ-

mentally biased (Newbold, 2010). Although some previous

studies have shown that museum records did not completely

capture the environmental conditions inhabited by the target

species (e.g. Hortal et al., 2008), others have shown that spa-

tially biased museum record data are unrelated to major

biases in environmental space (e.g. Kadmon et al., 2004).

Intuitively, good models will be difficult to construct from

environmentally biased data. Therefore, data that are

unbiased in the environmental space are ideal for building

good species distribution models.

Following this logic, our random sampling assumption can

be relaxed accordingly. Because random points are always ran-

domly sampled, we may be able to partially relax the random

sampling assumption for presences. Whichever sampling strat-

egy is adopted, we are only concerned whether sensitivity can

be accurately estimated (to some extent) from the sample of

presences, and random sampling provides a simple way to

obtain a good estimate of sensitivity. Actually, any sampling

strategy could be used, if sensitivity can be accurately esti-

mated. More work is still required to further verify this

approach, particularly with data from spatially biased sampling.

Although virtual species have been used in previous

studies, there is still no widely accepted method to develop

such entities. In this paper, we simulated species distribu-

tions by only taking into account environmental conditions

and have not considered broader ecological processes.

Therefore, these virtual species are unlikely to be as nuanced

in their distributions or associations as real-world taxa.

However, the species–environment relationships examined in

this paper were quite complex because both linear and

non-linear (i.e. quadratic and interaction) terms were

included and the coefficients were randomly generated for
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each species. We therefore believe that these virtual species

should mimic the characteristics of many real world species.

CONCLUSIONS

In conclusion, the threshold selection method based on max-

imizing the sum of sensitivity and specificity is a promising

method for use when reliable absence data are unavailable.

This is equivalent to maximizing the vertical distance from a

point on the ROC curve or lift curve to the diagonal line

(VDr and VDl, respectively) or maximizing the true skill

statistic (TSS). We have theoretically and empirically demon-

strated that the same threshold will be selected with this

method using either presence/absence data or presence-only

data. When there are no independent presence data for

threshold selection, the training data can be used for this

purpose. In this situation, max SSS can be used for MD,

ENFA and GAM models, and the training data prevalence

(trainPrev) and the mean predicted suitability (meanPred)

can be used as the threshold for RF models. Interpretations

of the converted distribution models using thresholds are

best considered in the majority of circumstances as potential

distributions, rather than as realized distributions.
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