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 Abstract. Most methods for modeling species distributions from occurrence records
 require additional data representing the range of environmental conditions in the modeled
 region. These data, called background or pseudo-absence data, are usually drawn at random
 from the entire region, whereas occurrence collection is often spatially biased toward easily
 accessed areas. Since the spatial bias generally results in environmental bias, the difference
 between occurrence collection and background sampling may lead to inaccurate models. To
 correct the estimation, we propose choosing background data with the same bias as occurrence
 data. We investigate theoretical and practical implications of this approach. Accurate
 information about spatial bias is usually lacking, so explicit biased sampling of background
 sites may not be possible. However, it is likely that an entire target group of species observed
 by similar methods will share similar bias. We therefore explore the use of all occurrences
 within a target group as biased background data. We compare model performance using
 target-group background and randomly sampled background on a comprehensive collection
 of data for 226 species from diverse regions of the world. We find that target-group
 background improves average performance for all the modeling methods we consider, with the
 choice of background data having as large an effect on predictive performance as the choice of
 modeling method. The performance improvement due to target-group background is greatest
 when there is strong bias in the target-group presence records. Our approach applies to
 regression-based modeling methods that have been adapted for use with occurrence data, such
 as generalized linear or additive models and boosted regression trees, and to Maxent, a
 probability density estimation method. We argue that increased awareness of the implications
 of spatial bias in surveys, and possible modeling remedies, will substantially improve
 predictions of species distributions.

 Key words: background data; presence-only distribution models; niche modeling; pseudo-absence;
 sample selection bias; species distribution modeling; target group.

 impl

 Introduction

 Species distribution modeling (SDM) is an important
 tool for both conservation planning and theoretical
 research on ecological and evolutionary processes
 (Loiselle et al. 2003, Kozak et al. 2008). Given sufficient
 resources, SDM can be based on data gathered
 according to rigorously defined sampling designs, where
 both presence and absence of species is recorded at an
 environmentally and spatially representative selection of
 sites (Cawsey et al. 2002). However, for most areas of
 the world and most species, resources are too limited to
 gather large sets of data including both presences and

 Manuscript received 31 December 2008; revised 14 May
 2008; accepted 21 May 2008. Corresponding Editor: D. F.
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 absences, and furthermore, many species have been
 extirpated from much of their original range. For these
 reasons, SDM relies heavily on presence-only data such
 as occurrence records from museums and herbaria
 (Ponder et al. 2001, Graham et al. 2004, Suarez and
 Tsutsui 2004). These occurrence data often exhibit
 strong spatial bias in survey effort (Dennis and Thomas
 2000, Reddy and D?valos 2003, Schulman et al. 2007),
 meaning simply that some sites are more likely to be
 surveyed than others; such bias is typically spatially
 autocorrelated, but this paper allows for arbitrary
 spatial bias. This bias, referred to as sample selection
 bias or survey bias, can severely impact model quality;
 however, the effect of such bias has received little
 attention in the SDM literature. We present a theoretical
 analysis of sample selection bias for several presence
 only SDM methods. We also describe a general
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 approach for coping with biased occurrence data, and
 empirically test its efficacy.

 The range of model types for fitting presence-only
 data has expanded rapidly over the last decade. In
 ecology, the most common methods for these data were
 originally those that fitted envelopes or measured point
 to-point similarities in environmental coordinates (Bus
 by 1991, Carpenter et al. 1993). These methods use only
 occurrence data, ignoring the set of environmental
 conditions available to species in the region. More
 recent methods achieve better discrimination by model
 ing suitability relative to the available environment.
 Information on the available environment is provided
 by a sample of points from the study region. We refer to
 these points as background or pseudo-absence data.
 Examples of specialized programs include Hirzel's
 ecological niche factor analysis ("ENFA" or "Biornap
 per"; Hirzel et al. 2002) and Stockwell and Peterson's
 genetic algorithm for rule-set prediction ("GARP";
 Stockwell and Peters 1999, Peterson and Kluza 2003).
 More generally, a broad range of logistic regression
 methods can be adapted to this situation, either in an
 approximation (modeling presences against background
 rather than against absences) or with more rigorous
 statistical procedures that correct for the possibility of
 true presences appearing in the background data
 (Keating and Cherry 2004; Ward et al., in press).
 Because the regression-related methods and other newer
 initiatives show generally higher predictive performance
 than other approaches (e.g., Elith et al. 2006, Hernandez
 et al. 2006), we focus here on a subset of more successful,
 widely used methods: boosted regression trees (BRT;
 Leathwick et al. 2006, De'ath 2007), maximum entropy
 (Maxent; Phillips et al. 2006), multivariate adaptive
 regression splines (MARS; Leathwick et al. 2005), and
 generalized additive models (GAM; Yee and Mitchell
 1991, Ferrier et al. 2002).
 These methods all require information about the

 range of environmental conditions in the modeled
 region, given by background samples. Some modelers
 think of the background samples as implied absences:
 partly because the word "pseudo-absences" gives that
 impression. However, the intention in providing a
 background sample is not to pretend that the species is
 absent at the selected sites, but to provide a sample of
 the set of conditions available to it in the region. The
 critical step in selection of background data is to develop
 a clear understanding of the factors shaping the
 geographic distribution of presence records. Two key
 elements are the actual distribution of the species and
 the distribution of survey effort. Potentially, the latter
 can be spatially biased, i.e., there may be sample
 selection bias. Most SDMs are fitted in environmental

 space without consideration of geographic space, so the
 importance of spatial bias is that it often causes
 environmental bias in the data. If a spatially biased
 sample proportionately covered the full range of
 environments in the region, then it would cause no

 problem in a model based on environmental data.
 However, this is usually not the case. If the bias is not
 accounted for, a fitted model might be closer to a model
 of survey effort than to a model of the true distribution
 of the species. For example, a species with a broad
 geographic distribution might only have been recorded
 in incidental surveys close to towns and beside roads.
 Background samples are commonly chosen uniformly at
 random from the study region; this characterizes the
 range of environments in the region well, but fails to
 indicate sample selection bias. If the roadsides and
 towns are not a random sample of the environment,
 applying any of the above modeling techniques to these
 data will produce a model that best describes the
 differences in the distribution of the presence sites
 compared to the background data. For example, if roads
 in this region happen to follow ridges, and if towns
 happen to be associated with the most fertile soils, then a
 model will find that ridges and fertile soils are positively
 correlated with the distribution of the species, whereas in
 reality they best describe the distribution of roads and
 towns, and hence survey effort.
 The most straightforward approach to address this

 problem would be to manipulate the occurrence data in
 order to remove the bias, for example by discarding or
 down-weighting records in over-sampled regions (e.g.,
 the de-biasing averages approach of Dudik et al. [2005])
 or by surveying under-represented regions. However,
 such manipulations are hampered by incomplete infor

 mation about the distribution of survey effort. In
 addition, the paucity of presence records for many
 species of interest makes discarding records unpalatable,
 and resources may not be available to conduct new
 surveys. The data may also be biased in a way that
 cannot be "fixed" by collecting new data: if many
 forested areas have been cleared, new surveys will not
 provide presence records of forest-dependent species in
 cleared areas. In the same way, less arid, more fertile
 areas are more likely to have been transformed by
 human activity, so new surveys would result in
 occurrence data that are biased toward arid or infertile

 areas. In these cases, the sample selection bias is an
 inherent part of the realized, current distribution of the
 species.

 An alternative approach is to manipulate the back
 ground data. While some studies explore this idea (e.g.,
 Zaniewski et al. 2002, Engler et al. 2004, L?tolf et al.
 2006), the ecological literature lacks a coherent theoret
 ical exploration, and the proposed solutions seem to
 represent different and probably incompatible reason
 ing. The approach we propose is to design the selection
 of background data so they reflect the same sample
 selection bias as the occurrence data. This aims to
 achieve the same environmental bias in both data sets.

 For example, if presence data are only taken from easily
 surveyed portions of the study region, then background
 data should be taken from the same areas (Ferrier et al.
 2002). The hope is that a model based on biased
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 presence data and background data with the same bias
 will not focus on the sample selection bias, but will focus
 on any differentiation between the distribution of the
 occurrences and that of the background. In other words,
 if the species occupies particular habitats within the
 sampled space, the model will highlight these habitats,
 rather than just areas that are more heavily sampled.
 This has been justified theoretically for Maxent (Dudik
 et al. 2005; summarized here in Maxent models for biased
 samples). In the regression case, we could find no clear
 treatment of how to understand and interpret models
 using presence-pseudo-absence data, particularly with
 varying biases in the underlying data, so we present that
 here. We first investigate how to interpret models
 produced with random background, using the theory
 of use-availability sampling in habitat-selection studies
 (Keating and Cherry 2004). We extend the analysis to
 biased data, and show that under reasonable conditions,
 models created using background data with the same
 sample selection bias as the presence data can be
 interpreted in the same way as models produced with
 completely unbiased data.

 It can be difficult to create background data with the
 same bias as presence data since we seldom know the
 sample selection distribution exactly. As an alternative,
 if presence records are derived from natural history
 collections, records for a broad set of species could be
 used to estimate survey effort. The set of species should
 be chosen so as to represent the specimen collection or
 observation activities of collectors of the target species.
 In general, the groups should contain species that are all
 collected or observed using the same methods or
 equipment; such groups of species are called target
 groups (Ponder et al. 2001, Anderson 2003). Broad
 biological groups (birds, vascular plants, and so on) are
 likely to be suitable. The sites for all records from all
 species in the target group then make up the full set of
 available information on survey effort and can be used
 as background data; we call such a set of sites target
 group background.

 To measure the effectiveness of target-group back
 ground, we compared it to random background using
 several modeling methods and the same data set as a
 recent comprehensive comparison of modeling methods
 (Elith et al. 2006). The data set covers 226 species from
 diverse regions of the world, with a wide range of sample
 sizes (2 to 5822, with a median of 57). The regions
 exhibit varying amounts of sample selection bias, with
 Ontario, Canada showing the most striking bias, toward
 the more populous south. A crucial aspect of this data
 set is that it contains independent, well-structured
 presence-absence test data. The test data were collected
 independently of the training data, using rigorous
 surveys in which the species' presence or absence was
 recorded at a collection of test sites. This allows us to

 evaluate model performance in a way that is largely
 unaffected by sample selection bias since the predictive
 performance of the models is evaluated on this test data,

 rather than the presence-only training data. We focus on
 average performance across broad groups of species
 rather than detailed expert evaluation of individual
 species models, and compare several of the better
 performing methods from the study of Elith et al. (2006).
 This allows us to determine how sample selection bias
 impacts performance of presence-only species distribu
 tion models on typical data sets, and whether target
 group background can effectively counteract sample
 selection bias on such data sets. Whilst the effect of

 background sample selection has been mentioned in
 relation to individual modeling methods (e.g., L?tolf et
 al. 2006, Elith and Leathwick 2007, Phillips and Dudik
 2008), this paper focuses on the general problem and on
 its relevance across a range of species, environments,
 and modeling methods.

 Fhe dangers of sample selection bias: an example

 When presence-absence data are available, there are a
 number of modeling methods that are known to be
 resilient to sample selection bias (Zadrozny 2004).
 However, bias can have a powerful effect on models
 derived from presence-background data; to demonstrate
 this dichotomy, we briefly consider a synthetic species in
 Ontario, Canada, and use the continuous environmental
 variables described in Elith et al. (2006). The probability
 of presence for the species (Fig. 1) is defined to be 1 for
 any location which is within the middle 40% of the range
 of all environmental variables. For each variable outside

 of the middle 40% of its range, the probability of
 presence is multiplied by a factor ranging linearly from
 0.7 (at the extremes of the variable's range) to 1.0 (at the
 30th and 70th percentiles). The particular constants used
 here were chosen for illustrative purposes only, to create
 a synthetic species with a broad preference for mid
 range conditions in all variables.
 Occurrence data are often biased toward human

 population centers and roads (Reddy and D?valos
 2003). Therefore, roughly following the human popula
 tion and road density of Ontario, we modeled sample
 selection bias with a sampling distribution that is
 uniform in the southern 25% of Ontario, uniform with
 b times lower intensity in the northern 50% of the
 province, and a linear transition of sampling intensity in
 between; we varied b between 1 (unbiased sampling) and
 100 (strongly biased sampling). Several predictor vari
 ables for Ontario have a strong north-south trend, so
 this spatial bias will translate into a bias in predictor
 space. Samples were generated by repeatedly picking a
 site according to this sampling distribution and then
 randomly labeling the site either as a presence (with
 probability equal to the species' probability of presence
 there) or absence (with the remaining probability).
 Sampling continued until there were exactly 200
 presences. Thus a full data set for each value of b
 contained 200 presences and a variable number of
 absences, depending on how many were selected in
 creating the set of 200 presences. Two boosted
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 Fig. 1. Effect of sample selection bias on predictive accuracy for an artificial species in Ontario, Canada, (a) Probability of
 presence for the species, with darker shades indicating higher probabilities, (b) Correlation between model output and true
 probability of presence, measured across the whole region (j'-axis), for various degrees of sample selection bias. Bias was introduced
 by sampling uniformly in the southern 25% of the region and uniformly b times lower in the northern 50% of the region, with a
 linear transition in between; the v-axis shows values of b. Models were made using boosted regression trees with no interactions,
 fitted using fivefold cross-validation.

 regression tree models (see Modeling methods) were then
 created: one with the set of presences and absences, and
 a second with the 200 presences together with 10000
 background samples chosen uniformly at random from
 the region, and weighted so that presence and back
 ground have equal weight, as in Elith et al. (2006). We
 used 10000 samples as this is large enough to accurately
 represent the range of environmental conditions in the
 study region; more background samples do not improve

 model performance (Phillips and Dudik 2008).
 The presence-absence models are highly correlated

 with true probability of presence, even under severe
 sample selection bias (b = 100). This happens because
 BRT is a "local" learner (Zadrozny 2004), so the model
 generated with biased training data converges asymp

 totically to the unbiased model (for large sample sizes)
 as long as two conditions hold: sampling probability is
 non-zero in the whole region, and sampling is condi
 tionally independent of species presence given the
 environmental conditions. In contrast, for the pres
 ence-only models, correlation with true probability of
 presence quickly drops as sample selection bias increases
 (Fig. 1). For b = 50, the presence-absence model is
 visibly similar to true probability of presence, while the
 presence-only model appears only weakly related (Fig.
 2). We note that the strong sample selection bias
 depicted in Fig. 2 may actually be very moderate
 compared to true occurrence data, where sampling
 intensity can vary by a factor of tens of thousands
 (Schulman et al. 2007: Fig. 4).

 Fig. 2. Predicted probability of presence modeled from (a) biased presence-only data and (b) biased presence-absence data.
 Both models were generated using boosted single-node regression trees, fitted with fivefold cross-validation. Black and white dots
 show sampled locations used for model building. Sampling intensity in the southern 25% of the region was 50 times higher than in
 the northern 50% of the region, with a linear transition in between. The presence-only model is strongly influenced by the bias,

 whereas the presence-absence model is not: compare with the true probability of presence in Fig. 1.
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 Models and Analysis
 Preliminaries

 In the analyses that follow, we consider an area with a
 total of N sites. For each site t, there are v known
 covariates (measured environmental variables) denoted
 by x = (x\,..., xv). An observation (t, y) records whether
 at a particular time the species is present (y = 1) or
 absent ( v = 0) at the site t. This treatment allows for the
 possibility that a species is present at a given site during
 one observation and absent in the next, as may happen
 for vagile species. The probability that the species is
 present at a site t, denoted P(y= 1 \t), may therefore lie
 somewhere between 0 and 1. Formally, observations are
 taken from a distribution over a sample space consisting
 of pairs (t, v), where t is a site and y is the response
 variable. We will use P to denote probability under
 spatially unbiased sampling from this sample space, i.e.,
 each site has equal probability (1/iV) of being sampled.
 For example, the prevalence of the species, denoted
 P(y ? 1), is the fraction of sites at which the species is
 present (for perfectly detectable non-vagile species), or
 the probability of observing the species at a randomly
 chosen site (for perfectly detectable vagile species).

 A collection of observations is unbiased in environ

 mental space if it samples each combination of
 environmental covariates proportionately to the amount
 of the study area that has those covariate values.
 Therefore, observations that are spatially unbiased are
 also environmentally unbiased, though the converse is
 not always true.

 Modeling methods

 The modeling methods considered here use two
 distinct approaches for presence-only modeling. The
 first approach is derived from regression techniques,
 which are normally applied to presence-absence mod
 eling. These methods estimate probability of presence
 from training data consisting of presences and absences
 for a given species. They have been adapted for use with
 presence-only data by treating the background data as if
 it were absence data. They are all logistic methods,

 modeling probability of presence as P(y = 1 | x) =
 exp[/(x)]/(l + exp[/(x)]) for some function / of the
 environmental variables, and they differ mainly in the
 form of the function/. We used the following presence
 absence methods:

 1) Generalized additive models (GAM) use nonpara
 metric, data-defined smoothers to fit nonlinear functions
 (Hastie and Tibshirani 1990, Yee and Mitchell 1991).

 2) Multivariate adaptive regression splines (MARS)
 provide an alternative regression-based technique for
 fitting nonlinear responses. MARS uses piecewise linear
 fits rather than smooth functions and a fitting procedure
 that makes it much faster to implement than GAM
 (Friedman 1991, Elith and Leathwick 2007).

 3) Boosted regression trees (BRT), also known as
 stochastic gradient boosting (Friedman 2001, Leathwick

 et al. 2006), use a form of forward stage-wise regression
 to construct a sum of regression trees. Each stage
 consists of a gradient-descent step, in which a regression
 tree is fitted to the derivatives of the loss function. Cross

 validation is used to avoid overfitting by halting model
 growth based on predictive accuracy on withheld
 portions of the data.

 The second approach is probability density estimation,
 where the presence data are assumed to be drawn from
 some probability distribution over the study region. The
 task is to estimate that distribution. This approach is
 represented here by a single method, called Maxent
 (Phillips et al. 2006, Dudik et al. 2007), described in

 Maxent models with unbiased samples. Whenever we
 present examples, we use either BRT or Maxent, since
 these are the two methods out of those considered here

 that performed best in the comparison of methods by
 Elith et al. (2006). The settings used for BRT have been
 improved over those used previously and we use a recent
 version of Maxent (version 3.0) with default settings. For
 both methods, therefore, the statistical performance we
 report for random background is improved over that
 presented by Elith et al. (2006).

 Presence-absence models with random background

 Before we analyze the use of presence-absence models
 (such as BRT, GAM, and MARS) on presence
 background data under bias, we must first understand
 the use of these methods on unbiased data. Using
 unbiased presence data and random background gives a
 sample model known in habitat-selection studies as a use
 availability sampling design (Keating and Cherry 2004)
 and defined as follows. The full set of training data
 consists of a set of samples, each obtained either by
 randomly choosing a sample with y = 1 to get a presence
 sample (a fraction p of the whole set), or randomly
 choosing a sample from the full set of N sites to get a
 background sample (the remaining fraction, 1 ? p). This
 sampling model suffers from two complications. First, the
 set of background samples typically includes both sites
 with y = 1 and sites with y = 0, a problem referred to as
 contaminated controls (Lancaster and Imbens 1996).
 Second, the sampling intensity (probability that a given
 data point will be chosen as a sample) may differ between
 presence and background samples, which makes it a case
 control sampling design. The relative sampling intensity is
 determined by the parameter p. Our goal in this section is
 to understand the effect of these two complications, and
 in particular, to determine exactly what quantity is being
 estimated when a model is fitted to use-availability data.

 For mathematical simplicity in our analyses, we use
 two steps to model the process by which each training
 sample is derived. The first step is a random decision
 about whether the current sample will be presence
 (probability p) or background (probability 1 ? p). The
 second step is a random draw either from the population
 of presences or from the full set of available sites,
 according to the outcome of the first step.
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 We will use PUA to denote probability under this
 sampling model. PUA is formally defined as a joint
 probability model over triples (t, y, s) where s is an auxiliary
 variable representing sampling stratum: s=\ for presence
 samples and s = 0 for background samples. Therefore,
 Pjja(s =l)=p and Pua(s = 0) = 1 ? p, and by definition,

 PuA(x\s = I) = P(x\y = 1)

 and

 PVA(x\s = 0)=P(x). (1)

 When a presence-absence model is applied to use
 availability data, the response variable being modeled is
 s, not y, so we obtain an estimate of P\jA(s = 1 I x), i.e., the
 probability that a site will be chosen as a presence sample
 rather than a background sample, conditioned on the
 environmental variables. It is crucial to note that this is not

 the same as P(y = 1 | x), the probability of occurrence
 conditioned on the environmental variables. Indeed, if we
 define

 rJ2jEiP(y=l)
 then we obtain the following relationship, similar to Eq. 11
 of Keating and Cherry (2004), but without their large
 sample assumption:

 ^,= lw=i+^=iW (2)
 This relationship is proved as follows:

 Pua(*=1|x)
 = Pua(x[5 = l)PVA(s = 1)//Wx) [Bayes' n?e]

 =_FuA(xk=l)PUA(j=l)]_
 [PuA(x\s = l)PuA(s = 1) + Pua(x|s = 0)PUA(s = 0)]

 [since s = 0 or 1]

 pPuA(x\s= 1)
 pPVA(x\s - 1) + (1 -p)PVA(x\s = 0)

 [definition of p]

 = 1/(1 + a) [dividing through by pP\jA(x\s = 1)]

 where a satisfies

 (l-p) Pua(x|s = 0)
 p PUA(x\s=l)

 p /,(xb = i)

 .(i-p) Hy = i)
 p P(y = i\x)

 r

 :P(y=l|x)'

 [by Eq. 1]

 [Bayes' rule]

 This has strong implications for interpretation of any
 model fitted to presence-background data using a
 presence-absence method, as the quantity being ap
 proximated is not equal to, or even proportional to,
 probability of presence. Despite these problems, this
 sampling model and the resulting estimate of P\ja(s ?
 1 | x) have been extensively used in SDM (Ferrier et al.
 2002, Zaniewski et al. 2002, Elith et al. 2006). Using an
 estimate of PtjaC? = 1 Ix) f?r species, modeling is
 reasonable as long as care is taken in the interpretation
 of model values. While P\ja(s = 1 | x) is not proportional
 to probability of presence, it is a monotone increasing
 function of probability of presence, i.e., it correctly
 ranks probability of presence. In particular, this means
 that any binary prediction made by thresholding P(y =
 I | x) (i.e., predicting presence only for sites with P(y =
 II x) above some threshold) can be obtained by thresh
 olding PuaC? = 1 | x), and vice versa, although the
 required thresholds will differ. When measuring model
 performance, measures that depend only on ranking of
 test data (such as the area under the receiver operating
 characteristic curve) might therefore be insensitive to the
 distinction between modeling P\ja(s = M x) or ^O7 =
 I | x), although the two approaches will likely yield
 different models.

 In habitat-selection studies using resource selection
 functions, the emphasis is on deriving P(y = 1 | x) from
 Pva(s = 1 | x) by inverting Eq. 2. If P(y = 1 | x) is
 assumed to be an exponential function, then PuaC? =
 II x) is logistic. A logistic model fitted to Pjjpfs = 1 | x)
 can thus be used to infer parameters of an exponential
 model for P(y = 1 | x) (Boyce et al. 2002, Manly et al.
 2002). However, this approach is controversial in the
 habitat-selection literature (Keating and Cherry 2004).
 An alternative way of estimating P(y = 1 | x) from
 presence-only data involves using the expectation
 maximization (EM) algorithm to iteratively infer prob
 ability of occurrence for the background sites (estima
 tion) and feed the results back into maximum likelihood
 parameter estimation (maximization; Ward et al, in
 press). Whilst this approach has strong theoretical
 justification, it requires knowledge of P(y = 1), and the
 implementation is not yet widely available, so we do not
 use it here. In summary, modeling P\ja(s = 1 | x) is the
 best currently available way to apply presence-absence
 models to presence-only data, and is therefore the
 approach we take here.

 Presence-absence models with biased background

 We have argued that sample selection bias is
 widespread in species occurrence data. We would
 therefore like to be able to correct for this bias. As in

 the unbiased case we cannot estimate P(y = 1 | x) without
 further knowledge of the prevalence P(y =1). Instead,
 we prove under a mild assumption that if the
 background data have the same bias as the occurrence
 data, the resulting model is monotonically related to P(y
 = 1 | x), as in the unbiased case. We therefore assume
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 that both background and presence samples are selected
 nonuniformly using the same sample selection distribu
 tion. A practical example could be that presence records
 are collected by driving along roads while stopping at
 random sites and walking up to 100 m from the road to
 record sightings of the species. This sample selection is
 biased toward roadsides, which in turn are likely to be
 biased away from gullies or particular rough terrain. To
 generate background data with the same bias, we
 randomly select sites within a distance of 100 m from
 any road (note that these might coincide with presence
 points). For this example, the sample selection distribu
 tion is uniform over sites whose distance from the road
 is at most 100 m and zero elsewhere.

 We introduce an additional auxiliary variable b to
 represent potentially biased selection of samples: sam
 ples are now drawn from a distribution over triples (t, y,
 b), and only samples with b = 1 are used for model
 training. Analogously to the unbiased case, a presence
 absence model fitted to a biased use-availability sample
 gives an estimate of Pjja(s = 1 | x, ?> = 1). The derivation
 of Eq. 2 is still valid if we condition all probabilities on b
 = 1, so Eq. 2 generalizes to

 w = w = v = l+r,/P(yL^b = l) (3)
 where

 P(y=l\b=l)
 P

 which is a constant independent of x.
 In many cases we can make the assumption that P(y =

 1 | x, b = 1) = P(y = 1 | x), i.e., that sampling effort and
 presence of the species are conditionally independent
 given x. Under this assumption, the right-hand side of
 Eq. 3 simplifies to 1/[1 + r'P(y = l|x)]. Thus, the
 function we are fitting, P\ja(s = 1 I x> b = 1), is
 monotonically related to what we are truly interested
 in, P(y = 1 | x). A simple case for which the conditional
 independence assumption is true is when all variables
 that affect presence of the species are included among
 the covariates. Similarly, we obtain conditional inde
 pendence if all variables that affect sample selection are
 included among the covariates (Zadrozny 2004). In
 general, though, conditional independence may not
 hold. For example, a pioneer plant species that is
 correlated with disturbance may be more common than
 climatic conditions would suggest near roads and towns,
 exactly where sample selection bias is higher. Unless
 disturbance level is used as a predictor variable, the
 conditional independence assumption would be incor
 rect.

 Maxent models with unbiased samples

 Maxent is a general technique for estimating a
 probability distribution from incomplete information
 (Jaynes 1957). It has been applied to species distribution

 modeling by assuming that the presence data have been

 drawn from some probability distribution n over the
 study region, and using the presence records for a
 species to determine a set of constraints that are likely to
 be satisfied by n (Phillips et al. 2006, Dudik et al. 2007).
 Maxent then produces as output the distribution of
 maximum entropy among all distributions satisfying
 those constraints; note that the distribution is over sites
 in the study region, not over environmental conditions.
 The constraints require that the expected value of each
 environmental variable (or some functions thereof,
 referred to as features) under this estimated distribution
 closely match its empirical average. Maximizing entropy
 is desirable, as doing otherwise would be equivalent to
 imposing additional (unfounded) constraints on the
 output distribution. Maximizing entropy also has the
 useful property that it results in a distribution with a
 simple mathematical description: under the Maxent
 distribution, the probability of a site is an exponential
 function of the features.

 The Maxent distribution can be related to conditional

 probability of presence as follows. The probability n(t) is
 the probability of the site t conditioned on the species
 being present, i.e., the conditional probability P(t\ y =
 1). We define

 P(xb_^)
 I[ j NP(x)

 i.e., f(x) is the average of n(t) over sites with x(t) ? x.
 This gives

 P(y = l|x) = ^pZ^PWy = 1) [Baye*' rule]
 = Nf(x)P(y = 1 ) [definition of /].

 The function f(x) is therefore proportional to prob
 ability of presence, and the exponential function
 describing the Maxent distribution is an estimate of

 f(x). Note, however, that with presence-only data we
 typically do not know the constant of proportionality
 P(y= 1), i.e., the prevalence of the species, since P(y= 1)
 is not estimable from presence-only data alone (Ward et
 al., in press).

 Maxent models for biased samples

 Maxent has been available now for five years as a
 stand-alone program that enables the spatial modeling
 of presence-only data. Because such data are often
 biased, the authors have worked on methods for dealing
 with sample bias, one of which, called FactorBiasOut,
 we briefly describe here (for technical details, see Dudik
 et al. [2005]). To describe the impact of sample selection
 bias on density estimation, we introduce the notation
 P\p2 for the site-wise product of two probability
 distributions normalized over the study region, i.e.,
 P\Pi(t) =P\if)P2{t)l^t' P\(t')p2(t')' As opposed to the case
 of unbiased estimation, we now assume that the
 presence sites for a species are biased by a sample
 selection distribution a, in other words, the presence
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 sites are recorded by observers who pick locations
 randomly according to a, rather than uniformly at
 random (in the notation of Presence-absence models
 with biased background, a(t) = P(t \b? 1)). The presence
 sites are therefore samples from the distribution csn
 rather than from the true species distribution n.

 The FactorBiasOut method estimates un, then factors
 out the bias a. It does this by outputting the distribution
 that minimizes the relative entropy RE(crg 11 a) among
 all choices of the probability distribution q, subject to
 the constraints mentioned in Maxent models with
 unbiased samples, with the constraints now applying to
 aq, since that is the distribution from which we have
 samples. Relative entropy, also known as Kullback
 Liebler (KL) divergence, measures how different two
 probability distributions are. It makes sense to seek to
 minimize the difference from a, since a null model
 would have the species distribution being uniform, so
 the presence data would simply be drawn from a.

 In the special case that there is no sample selection
 bias, i.e., cj is the uniform distribution, FactorBiasOut is
 just the standard Maxent, since minimizing entropy
 relative to the uniform distribution is the same as
 maximizing entropy. Under reasonable conditions, the
 output of FactorBiasOut converges, with increasing
 sample size, to the distribution qa that minimizes
 RE(g7i II <jq) among the class of Gibbs (i.e., exponential)
 distributions. This generalizes the result for the unbiased
 case, that the output of Maxent converges to the Gibbs
 distribution that minimizes RE(tt 11 q) (Dudik et al.
 2007). In other words, the output of FactorBiasOut
 converges to a distribution that is close, in a strict sense
 and as in the unbiased case, to the true distribution %, so

 bias has been removed from the prediction.
 As described so far, the FactorBiasOut method

 requires knowledge of the sampling distribution a.
 However, it is enough to have a set S of independent
 samples from a. We can use S as background data for
 fitting a Maxent distribution and then apply the
 resulting model to obtain a distribution over the entire
 study area. For large \S\, the resulting distribution
 converges to the same distribution qa. To summarize, we
 have shown that, as with the regression models, using
 background data with the same sample selection bias as
 the occurrence data yields a Maxent model with
 theoretical properties that are analogous to the unbiased
 case.

 Experimental Methods

 Data sources

 We used data for 226 species from six regions of the
 world: the Australian Wet Tropics (AWT), Ontario,
 Canada (CAN), northeast New South Wales, Australia
 (NSW), New Zealand (NZ), South America (SA), and
 Switzerland (SWI). The species represent a range of
 geographic distributions, habitat specialization, and
 biological groups/life forms. Similarly, there is a wide
 range in the amount of training data per species (2-5822

 occurrence records, median 57). In the independent
 evaluation data, the presence or absence of each species
 is described at between 102 and 19 120 sites. There are

 11-13 environmental data layers per region, and the
 layers are typical of what is used for SDM. Environ

 mental data varied in functional relevance to the species
 and spatial resolution. Data for three regions (NSW,
 NZ, SWI) had more direct links to species' ecology at
 the local scale than the climate-dominated variables

 from AWT, CAN, and SA (Elith et al. 2006, Guisan et
 al. 2007). Layers from AWT, NSW, NZ, and SWI had
 grid cell sizes of around 100 m and those from CAN and
 SA were 1 km. More details on the species and
 environmental data layers can be found in Elith et al.
 (2006).

 Background treatments

 Two sets of background data were used. First, we
 used 10 000 sites selected uniformly at random from
 each region (as in Elith et al. [2006], and referred to as
 random background). Second, and uniquely for this
 study, for each of the 226 species we generated a set of
 background data consisting of the presence localities for
 all species in the same target group (referred to as target
 group background). The target groups were birds or
 herpetofauna for AWT; birds for CAN, plants, birds,
 mammals or reptiles for NSW; and plants for NZ, SA,
 and SWI (Table 1).

 Evaluation statistics

 The modeled distributions were evaluated for predic
 tive performance using the independent presence
 absence sites described above. We used the area under

 the receiver operating-characteristic curve (AUC) to
 assess the agreement between the presence-absence sites
 and the model predictions (Fielding and Bell 1997). The
 AUC is the probability that the model correctly ranks a
 random presence site vs. a random absence site, i.e., the
 probability that it scores the presence site higher than
 the absence site. It is thus dependent only on the ranking
 of test data by the model. It provides an indication of
 the usefulness of a model for prioritizing areas in terms
 of their relative importance as habitat for a particular
 species. AUC ranges from 0 to 1, where a score of 1
 indicates perfect discrimination, a score of 0.5 implies
 random predictive discrimination, and values less than
 0.5 indicate performance worse than random.

 When we are working with presence-only data, we can
 define the AUC of a model on a set of presence sites
 relative to random background as the probability that
 the model scores a random presence site higher than a
 random site from the study area. The resulting AUC

 measures the model's ability to distinguish test sites from
 random, but the value of the AUC is harder to interpret
 than in the presence-absence case. While a score of 0.5
 still indicates discrimination that is no better than
 random, the maximum value attainable is typically less
 than 1 (Wiley et al. 2003, Phillips et al. 2006).
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 Table 1. Target groups and measures of training and testing bias.

 Target group  Region  No. species  AUCT  AUCe,
 AWT-bird
 AWT-plant
 CAN
 NSW-bird
 NSW-mammal
 NSW-plant
 NSW-reptile
 NZ
 SA
 SWI

 Australian wet tropics
 Australian wet tropics
 Ontario, Canada
 New South Wales
 New South Wales
 New South Wales
 New South Wales
 New Zealand
 South America
 Switzerland

 20
 20
 20
 10
 7

 29
 8

 52
 30
 30

 0.8337
 0.841
 0.9473
 0.8789
 0.9341
 0.7054
 0.9219
 0.7443
 0.7502
 0.8564

 0.7887
 0.5649
 0.9216
 0.877
 0.8402
 0.6303
 0.8539
 0.7619
 0.7667
 0.8256

 Notes: For each target group, AUCTG is the area under the receiver operating characteristic curve (AUC) of training presence
 sites vs. random background for a Maxent model trained on all presence sites for the target group. AUCeval is the AUC of the same

 model evaluated using the set of test sites for that target group vs. random background. A high value of AUCTG indicates that the
 training sites are highly biased and that sample-selection bias can be predicted well as a function of environmental conditions. A
 high value of AUCevai indicates that the test sites and training sites have similar strong biases.

 The correlation, COR, between a prediction and 0-1
 observations in the presence-absence test data set is
 known as the point biserial correlation, and can be
 calculated as a Pearson correlation coefficient (Zheng
 and Agresti 2000). It differs from AUC in that, rather
 than depending only on rank, it measures the degree to
 which prediction varies linearly with the observation.
 Because it depends on the prediction values rather than
 simply on their order, it is likely to be sensitive to the
 effect of varying relative sampling intensity in the
 training data (Eq. 2).

 To assess whether there is a monotone relationship
 between two variables, we use Spearman's rank corre
 lation coefficient (p), which is a nonparametric measure
 of correlation. We use p rather than Pearson's product
 moment correlation (r) to avoid two assumptions
 required by the latter: that the relationship between
 the two variables is linear, and that the data are drawn
 from normal distributions.

 Measuring bias

 In order to measure the effect of bias on predictions, it
 is useful to be able to measure the amount of bias in a set

 of presence-only samples. Specifically, we would like to
 measure the amount of bias for each target group. We
 do this by estimating how well we can discriminate
 target-group sites from the background, by using

 Maxent to make a model of target-group sites and
 using the AUC of the target-group sites vs. background
 as a measure of discrimination. We refer to this value as

 AUCTG- If AUCTG is high, it means that the environ
 mental variables can be used to distinguish the spatial
 distribution of target-group presences from random
 background, and therefore target-group presences sam
 ple environmental space in very different proportions
 from the proportions present in the study area, i.e., the
 target-group presences are biased both in environmental
 and geographic space. We therefore use AUCTG as an
 estimate of sample selection bias for the target group,
 but with the following two reservations. First, spatial
 bias will only be picked up by AUCTg if it results in bias

 in environmental space, i.e., if some environmental
 conditions are more strongly represented in the target
 group presence data than we would expect based on the
 proportion of sites with those conditions. Any spatial
 bias that is independent of the environmental variables
 will not be picked up by AUCTG- However, such spatial
 bias is less problematic than the bias measured by
 AUCjg, since a species distribution model cannot use it
 to distinguish presences from background. Second, the
 target group may truly occupy only part of the
 environmental space represented in the study area, in
 which case AUCTG may be higher than 0.5 even if there
 is no sample selection bias, i.e., even if the presence
 records were gathered with uniform survey effort across
 the study area. For these reasons, AUCTG should be
 interpreted carefully only as an estimate of bias. Note
 also that the use of Maxent models here is not essential;
 any of the methods used in this paper would have
 sufficed.

 Once we have an estimate of bias in the training data,
 it is possible to measure how well this bias estimate
 predicts sampling effort in the evaluation data. A simple
 systematic design for evaluation data would uniformly
 sample the study region, and therefore have no bias.

 However, bias may arise, for example if the evaluation
 data derive from a survey of only part of the region,
 such as all uncleared, forested areas. If the sample
 selection and evaluation biases are similar, we might
 expect it would help us in constructing better-perform
 ing models. We measure the similarity of the biases using
 the value AUCevai, defined as the AUC of the Maxent

 model of training group sites, with the AUC evaluated
 using test sites (both presences and absences) vs. random
 background. A high value of AUCeval indicates that
 environmental conditions at the test sites are very similar
 to those at the training sites, and different from most of
 the study region. The amount of bias varied consider
 ably between regions and target groups (Table 1), with
 the strongest bias and the highest value of AUCevai
 occurring in Canada (Fig. 3). AWT-plant training data
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 Fig. 3. Bias in the Canada training data used in Elith et al.
 (2006). Training sites for all species combined are shown as
 black dots and exhibit a strong bias toward the south of the
 region. Test sites exhibit a very similar pattern of bias (not
 shown). The region is shaded to indicate strength of prediction
 of a maximum entropy (Maxent) model trained on these
 training sites, with dark shades indicating stronger prediction.
 Note that the bias is stronger than the bias shown for the
 artificial species in Fig. 2.

 were least effective at predicting test sites (AUCevai =
 0.5649).

 Results

 The average AUC and COR values improved for all
 methods when using target-group background (Table 2).
 The improvement in each statistic was highly significant
 for all methods (P < 0.001, two-tailed Wilcoxon signed
 rank test, paired by species). According to an analysis of
 variance, the three factors affecting AUC and COR
 (species, background, and algorithm) are all highly
 significant (P < 1 X 10~14, F test), with the strongest
 effect being for species. The effect of background is
 slightly greater than that of algorithm for both AUC
 and COR (Table 3). With target-group background, the
 best methods achieved average AUC values above 0.7 in
 all regions (Fig. 4). The improvement in AUC scores
 depended strongly on the estimated amount of bias in
 training data for the target group (Fig. 5) and with the
 degree to which the distribution of training data can be
 used to predict test sites (Fig. 6). For all four methods,
 there was a strong monotone dependence of improve

 ment in AUC on both estimates of bias as measured by
 Spearman's rank correlation coefficient (Table 4), with a
 high level of statistical significance in all cases.

 Using target-group background has a visually marked
 effect on some predictions. The greatest improvement in
 AUC was for a Canadian species, the Golden-crowned
 Kinglet, a generalist species that is widely distributed
 across Ontario and that favors old conifer stands. For

 this species, the AUC rose from 0.3379 to 0.8412 for
 Maxent and from 0.2920 to 0.8648 for BRT; the
 predictions with and without target-group background
 are very different (Fig. 7). The model with target-group

 background is much more widespread, excluding mostly
 the southernmost tip of Ontario, which is the only part
 of the province that is predominantly deciduous. The
 map produced with target-group background is much
 closer visually to maps of breeding evidence and relative
 abundance for this species (Cadman et al. 2008),
 differing mainly by strongly predicting the far northeast
 of the province, where there is little current evidence of
 breeding.

 Discussion

 For all the algorithms we consider here, using target
 group background gave a substantial improvement in
 model performance, measured by both AUC and COR
 (Table 2). To evaluate the extent of the improvement, we

 would like to know how it compares with the differences
 between modeling methods. Elith et al. (2006) found
 that presence-only modeling methods fell into three
 distinct groups. The lower group consisted largely of
 methods that do not use background data, such as
 BIOCLIM (Busby 1991). The middle group contained
 traditional regression-based methods such as GAM and

 MARS among others, while the top group included
 Maxent and BRT. The improvement due to target
 group background (Table 2) is similar to the difference
 between groups in Elith et al. (2006). In fact, an analysis
 of variance shows the effect of background type as being
 larger than the effect of modeling method (Table 3). We
 conclude that appropriate choice of background data
 affects model performance for the four methods
 presented here as much as the choice of modeling
 method. Since all tested methods benefit from appro
 priate background, we recommend both well-informed
 selection of method and careful choice of background
 samples.

 The improvement varied considerably between target
 groups, with the largest gains seen for target groups with
 the most biased training data (Fig. 5). This addresses an
 anomaly from Elith et al. (2006), where BIOCLIM was
 one of the worst methods in all regions except Canada,
 where it was one of the best. With target-group

 Table 2. Area under the receiver operating characteristic
 curve (AUC) and correlation between predictions and 0-1
 test data (COR) for the methods considered; values shown
 are averages over all 226 species.

 Random background Target-group background

 Model AUC COR AUC COR
 BRT 0.7275 0.2130 0.7544 0.2435
 Maxent 0.7276 0.2100 0.7569 0.2446
 MARS 0.6964 0.1787 0.7260 0.2145
 GAM 0.6993 0.1765 0.7368 0.2196

 Notes: For random-background models, background data
 were chosen uniformly at random from the study area. For
 target-group background, background data are the sites with
 presence records for any species from the same target group.
 Models are boosted regression trees (BRT), maximum entropy
 (Maxent), multivariate adaptive regression splines (MARS),
 and generalized additive models (GAM).
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 Table 3. Coefficients for an analysis of variance for AUC and COR evaluated on independent presence-absence test data for
 models of 226 species.

 Algorithm Background Effect SE

 Measure BRT GAM MARS Maxent Random Target group Species Algorithm Background
 AUC 0.0128 -0.0101 -0.0169 0.0141 -0.0154 0.0154 0.0228 0.0030 0.0021
 COR 0.0157 -0.0146 -0.0160 0.0149 -0.0180 0.0180 0.0241 0.0032 0.0023

 Note: Factors were species (per-species effects not shown), algorithm used to make the model (BRT, GAM, MARS, or Maxent),
 and background data used for the model (random or target group).

 background, all the methods considered in this paper
 perform better than BIOCLIM in all regions. This
 confirms that the previous anomalous results in Canada
 were due to a strong bias in the occurrence data
 impacting the performance of any method that used
 background data. With target-group background, per
 formance of the methods that use background data is
 now consistent across regions (Fig. 4; compare with Fig.
 5 of Elith et al. [2006]).
 The effect of target-group background varies species

 by species, and one might expect that it would be
 systematically affected by characteristics of a species
 distribution, in particular the species' prevalence in the
 study area. We investigated this question, measuring the
 prevalence of a species as the fraction of test sites in
 which the species is present. However, we found no clear
 patterns. For BRT, the improvement in AUC is slightly
 larger for generalist species (those with high prevalence),

 while the improvement in COR is slightly larger for
 specialists (with low prevalence). In contrast, for
 Maxent, the improvement in AUC was unaffected by
 prevalence, while COR values improved more for
 generalists. Details are omitted, since the results were
 inconclusive.

 Note that target-group background substantially
 improved predictions in Switzerland (Fig. 5), and the
 improvement is statistically significant for all methods
 (P < 0.001, two-tailed Wilcoxon signed rank test, paired
 by species). This is initially surprising, since the
 presence-only training data set is extensive and of high
 quality. However, the sites only sample a subset of the
 country (forested areas) and therefore they do not
 represent areas that could support forest but are not
 currently forested. This means that use of random
 pseudo-absences misled the models to some extent. The
 only region where target-group background reduced

 Australian
 wet tropics

 Ontario

 Northeast
 New South Wales

 New Zealand

 South America

 Switzerland
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 Fig. 4. Performance using target-group background of methods in each of the modeled regions, measured using area under the
 receiver operating characteristic curve (AUC) on independent presence-absence test data.
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 Fig. 5. Plot of improvement in AUC on independent presence-absence test data when using target-group background instead
 of random background. Models were created using four methods (boosted regression trees [BRT], maximum entropy [Maxent],
 multivariate adaptive regression splines [MARS], and generalized additive models [GAM]), and minimum, mean, and maximum
 improvement in AUC across methods are shown for each target group (endpoints of bars are minimum and maximum values). The
 x-axis is a measure of the amount of bias in training data for the target group. It is obtained by training a Maxent model using all
 presence sites for the target group, and measuring the AUC of the training sites relative to random background. The abbreviations
 are: AWT, Australian Wet Tropics; CAN, Canada; NSW, New South Wales; NZ, New Zealand; SA, South America; SWI,
 Switzerland.

 average performance was South America, for BRT and
 Maxent, but the decrease is small and not statistically
 significant (P > 0.65 for BRT, P > 0.84 for Maxent,
 two-tailed Wilcoxon signed rank test, paired by species).
 When using random background, all the modeling

 methods we consider will make predictions that are

 biased toward areas that have been more intensively
 sampled. In comparison, target-group background
 removes some of this bias, spreading predictions into
 unsampled areas with similar environmental conditions
 to sampled areas where the species is present. The test
 sites for most of our target groups exhibit similar spatial
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 Fig. 6. Scatter plot of improvement in AUC on independent presence-absence test data when using target-group background
 instead of random background. The x-axis is a measure of how well target-group background predicts the distribution of test sites,
 namely, the AUC of a Maxent model trained on all presence sites for the target group and tested using all test sites for that group
 versus random background sites. Models were created using four methods (GAM, MARS, BRT, Maxent), and minimum, mean,
 and maximum improvement in AUC across methods are shown for each target group.
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 distributions to the training sites, and therefore target
 group background will cause prediction strength (i.e.,
 model output values) to decrease at test sites relative to
 less-sampled areas, compared with random background.

 Thus, it is crucial that our test data are presence-absence
 data, so that we are measuring discrimination at test
 sites, rather than comparing them to random back
 ground. If the test data were presence-only, environ
 mental bias in conditions at test sites would strongly
 influence test results. For example, the Maxent models
 trained with target-group background have much lower
 AUC (0.7168) than models trained with random
 background (0.8201) if the AUC in both cases is
 measured using presences at test sites relative to random
 background, rather than relative to absences at test sites.
 The use of presence-only evaluation data may explain
 why L?tolf et al. (2006) found that an approach similar
 to target-group background decreased GLM model
 performance.

 One concern with using target-group background is
 that we are focusing only on parts of geographic (and
 thus environmental) space that contain presence sam
 ples. Predictions to unsampled areas could therefore be
 less reliable. This effect is not evident in our statistical

 results: the average AUC for the groups NSW-plant and
 AWT-plant, whose test sites are not well predicted by
 the distribution of training sites, barely changes when
 using target-group background (Fig. 6). Nevertheless,
 predictions into unsampled areas, especially those with
 conditions outside the range observed in sampled areas,
 should be treated with strong caution. We also note that
 a critical assumption of the target-group approach is
 that the data for all species in the group were collected
 using the same methods, so that the target-group
 occurrences represent an estimate of sampling effort
 that is applicable for each member of the group. The set
 of species in the target group should be chosen with this
 in mind.

 Table 4. Spearman rank correlations of improvement in AUC
 when using target-group background instead of random
 background.

 Correlation with Correlation with
 training bias test bias

 Model Spearman's p P Spearman's p P
 Maxent 0.87 0.002 0.81 0.008

 GAM 0.90 <0.001 0.93 <0.001
 BRT 0.75 0.017 0.87 0.002

 MARS 0.84 0.004 0.95 <0.001

 Notes: The improvement is correlated against the degree of
 bias in the training data for each target group ("training bias")
 and a measure of how well the training data for each target
 group predict the test sites ("test bias"). In each case, we give
 Spearman's rank correlation coefficient (p) and the two-sided P
 value for the null hypotheses that p = 0.

 The evaluation data we have used here measure model

 performance according to the ability to predict the
 realized distribution of a species, as represented by
 presence-absence data at test sites. We note that many
 applications of species distribution models depend on
 predicting potential distributions, rather than realized
 distributions (Peterson et al. 1999). A species may have
 failed to disperse due to geographic barriers, or be
 excluded from an area due to competition. In the current
 evaluation, prediction into such areas would be penal
 ized; however we note that it is usually not possible, with
 either occurrence or presence-absence data, to test
 ability to predict potential distribution. It is possible
 that some of the species considered here are absent from
 significant portions of their potential distribution, so our
 conclusions refer to the ability of models to predict
 realized distributions. We note also that the present
 study concerns the ability to derive accurate models in a
 single geographic area under fixed climatic conditions.
 Therefore, our conclusions do not necessarily apply to
 uses of species distribution models involving extrapola

 Fig. 7. Maxent predictions in Ontario, Canada for the Golden-crowned Kinglet, a widely distributed generalist species, created
 (a) without and (b) with use of target-group background. Dark shades indicate stronger prediction, while white or black dots are
 presence sites used in training. Without target-group background, the prediction is similar to the model of sampling effort (Fig. 3).
 Target-group background results in stronger prediction in less-sampled areas, reducing dependency of sampling effort.
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 tion, i.e., producing a model using one set of environ
 mental variables and then applying it to another set with
 the same names, but describing conditions for a different
 time or geographic area. Examples of such extrapola
 tions involve future climate conditions (Thomas et al.
 2004) or areas at risk for species invasions (Thuiller et al.
 2005).

 Alternate explanations

 We have assumed so far that the improvement in
 performance due to target-group background is due to
 properly accounting for sample selection bias in the
 training data. Here we consider other explanations for
 the performance improvement.

 Factoring in the test site bias.?-When modeling a
 species distribution, we may be more interested in model
 performance under some conditions than others, in
 particular, under conditions that are broadly suitable for
 the species or target group. For example, if we want a

 model to predict the specific niche of a montane species
 within an alpine area, in a broad region that includes a
 lot of lowland, we should make sure that all different

 montane conditions are represented in the evaluation
 data. However, - if we were to include a number of
 lowland sites in proportion to lowland area, our
 evaluation statistics would not tell us much about the

 quality of prediction in the alpine area, since a high
 AUC value can be obtained by simply ranking montane
 areas higher than lowlands. In general, evaluation data
 should be chosen in a way that is relevant to the required
 output and use of the models, and so may focus on
 restricted areas.

 In the case that evaluation data are biased toward
 areas representing only a subset of environmental
 conditions, we expect better performance if training
 data have the same bias, so that model development is
 focused on the environmental conditions that will be

 examined during model evaluation. This can be done
 formally, for example by transductive learning where
 unlabeled test data are used to reweight training data
 (Huang et al. 2007). It is possible, therefore, that the
 reason that target-group background improves model
 performance is that it focuses training on the most
 important areas of the region, which are also the areas

 with the most test data.

 For presence-only modeling, training sites for a target
 group will be drawn from broadly suitable areas for the
 group. The distributions of target-group sites and test
 sites may therefore be similar, in which case using target
 group background brings the spatial distribution of the
 full complement of training data (presences plus
 background) closer to that of the test data. To see
 formally why this is advantageous, consider the case of

 Maxent. Assume the true species distribution is n and
 the sampling distribution is a. When using FactorBias
 Out, the output converges to the distribution q*, which
 minimizes RE(o~7t j j oq) among Gibbs distributions q
 (see Maxent models for biased samples). We can expect

 that q* is close to q*, the distribution that minimizes
 RE(7i | ! q), but it is not always true that q* = q* (Dudik
 et al. 2005). To obtain the best test results, we would like
 the Maxent distribution to approximate n with respect
 to the distribution of test data, i.e., we should find q*st
 that minimizes RE(atest7c 11 otestq) as a function of q. If a

 = fjtest, this is exactly what FactorBiasOut does, and
 what target-group background approximates. Other
 wise, we must rely on the assumption that q* and g*st
 are similar.

 For the presence-absence methods, the reasoning is
 similar. If test sites are chosen according to the
 distribution atest, then we are evaluating how well our
 predictions model probability of occurrence under atest,
 i.e., P0tes((y = 1 | x). From Presence-absence models with
 biased background, we know that presence-absence
 methods applied to presence-only data and background
 data with the same bias are approximating a monotonie
 function of Pa(y =1 \x). Therefore, the best we can hope
 for is a = atest; otherwise we must rely on the
 assumption that P^y = 1 | x) and PGtsst(y = M*) are
 similar.

 Testing on similar conditions to those encountered
 during training has the potential to increase estimates of
 model performance, in addition to the improvement
 given by properly accounting for sample selection bias in
 the training data. Indeed, this seems to be the case for
 the regression-based methods (BRT, GAM, and

 MARS): note the higher correlation of performance
 with test bias than with training bias in Table 4. In
 contrast, for Maxent the correlation decreases some
 what, and we conclude that for this data set, properly
 dealing with training bias is a sufficient explanation of
 the performance improvement for Maxent given by
 target-group background.

 Farget-group data suggest true absences.?In some
 situations, target-group sites without records for a
 particular species can be interpreted as true absences.
 For example, in presence-only data collections, includ
 ing some of those used here, many sites are research
 stations or other well-known sites that have been visited

 multiple times and have multiple recorded species
 constituting an inventory of species present there.
 Therefore, species that are not recorded at such sites
 are likely to be absent. If most target-group sites are well
 inventoried, then absence records can be derived by
 selecting sites that have a record from the target group
 but not for the species being modeled.

 On the other hand, a lot of herbarium and museum
 records are there because a collector has noticed a
 species in an odd place (e.g., it might be considered a
 range expansion), because the collector has a primary
 interest in that species, or because the species is rare and
 all occurrences are recorded. In such cases, the collector
 will not be recording all species from the target group.

 In all experiments, we used all target-group records as
 background. We call this approach overlapping back
 ground, because the background data include presences
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 of the modeled species (as it belongs to the target group).
 However, if target-group sites where the modeled species
 was not observed are true absences, then we expect
 better results if we treat them as such. To test this

 hypothesis, we removed the sites where the modeled
 species was recorded from the target-group background,
 resulting in what we call nonoverlapping background.
 This removes the problem of contaminated controls (see
 Presence-absence models with random background) and
 results in a case-control sampling model. If the selection
 of survey sites is biased according to a distribution a,
 then it results in a case-control sampling model for P0(y
 = 11 x), which may be assumed to be equal to P( y =l\x)
 (but see Presence-absence models with biased back
 ground). A presence-absence model fitted using non
 overlapping background data can then be used to index
 probability of occurrence; if the species prevalence under
 a is known, then a case-control adjustment can be made
 in order to estimate probability of occurrence (Keating
 and Cherry 2004).
 We tried this alternative approach (without a case

 control adjustment, as species prevalence cannot be
 derived from our data set) for the presence-absence
 methods in our study (Table 5). We observed very little
 difference in performance between the two background
 formulations. The biggest difference is a slight improve
 ment in performance for GAM with overlapping
 background. Thus, for our data set at least, there is no
 benefit to interpreting missing records from target-group
 sites as true absences.

 Related approaches

 A related option is to use target-group background
 data to directly model survey effort (Zaniewski et al.
 2002). The surveyed sites are modeled against a random
 background sample from the region. The resulting
 model of survey effort can be used to make a weighted
 selection of background data, with higher probability
 sites being selected most often, for use in species
 distribution modeling. The advantage is that a large
 amount of biased background data can be produced,
 even if the target-group background data are limited.
 The danger is that the extra step of modeling introduces
 an extra source of error on top of the variability in
 model output caused by varying survey effort. The
 present study arose from a comparison of this method
 (which we term modeled target-group background)
 against target-group background and random back
 ground, using a subset of the species modeled by Elith et
 al. (2006). The preliminary results (not shown here)
 suggested that target-group background clearly outper
 forms modeled target-group background. The size of the
 improvement of target-group background over random
 background suggested that a larger study was warrant
 ed, resulting in the present paper.
 Another approach for explicitly modeling survey

 effort is to include it as a level in a hierarchical Bayesian
 framework (e.g., Gelfand et al. 2006). One advantage of

 Table 5. Performance of presence-absence methods using
 target-group background when presences for the modeled
 species are included in the background (overlap) or excluded
 (interspersed).

 Overlap background Interspersed background
 Model AUC COR AUC COR

 BRT 0.7544 0.2435 0.7544 0.2442
 GAM 0.7368 0.2196 0.7315 0.2092
 MARS 0.7260 0.2145 0.7222 0.2102

 this approach is that the model gives explicit estimates of
 uncertainty in the predictions; in contrast, for the
 models we have considered here, uncertainty estimates
 are typically obtained by bootstrapping (generating
 separate models for random subsets of the training
 data, in order to derive pointwise variance in predic
 tions). To our knowledge the hierarchical Bayesian
 approach has only been applied to presence-absence
 data, rather than the presence-only data that are the
 focus of this study, so it cannot be directly compared
 with the target-group background approach.
 Given presence records for only one species and no

 information on collection effort, a simple option is to
 define areas within the region where it is broadly
 possible that the species could occur. For example, if
 modeling a tree species in a landscape with substantial
 amounts of clearing for agriculture, spatial records of
 clearing (e.g., from remotely sensed data) could be used
 to define areas to be excluded from the set available for

 background data selection. Doing so would counteract a
 sample selection bias toward environmental conditions
 that are less suitable for agriculture, as long as the
 cleared areas correspond temporally with the species
 presence records. This is a special case of the biased
 background sampling approach we have described here,
 where the sampling intensity is zero in cleared areas, and
 uniform in other areas. An alternative approach to
 correct for this bias is to include land use as a predictor
 variable.

 Engler et al. (2004) used a single species approach to
 generate weighted background points for input to
 GAM. They used an ecological niche factor analysis
 (ENFA) to create "ENFA-weighted" background
 points by choosing points that were within the study
 region but unlikely to have the species (i.e., ENFA value
 less than 0.3). They compared this approach to random
 background, and found that it improved performance
 according to three out of four of their evaluation
 measures. This approach has the aim of having
 background data biased in favor of areas where the
 species is thought to be absent. In principle, this moves
 the sampling design away from a use-availability design
 and toward being a case-control design. However, the
 method of Engler et al. (2004) does not address the issue
 of bias in the occurrence data, and the extra step of
 modeling in the generation of background data may
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 introduce spatial and environmental bias in the controls
 and makes models difficult to interpret.

 Conclusions

 While the problem of sample selection bias has
 received much attention in other fields (e.g., the Nobel
 prize-winning econometrics work of Heckman [1979]), it
 has not been adequately addressed for species distribu
 tion modeling. Sample selection bias is a serious
 problem for species distribution models derived from
 presence-only data, such as occurrence records in
 natural history museums and herbaria. It has a much
 greater impact on such models than it does on models
 derived from presence-absence data. When the sampling
 distribution is known, we have shown how sample
 selection bias can be addressed by using background
 data with the same bias as the occurrence data; our
 analysis holds for most of the commonly-used presence
 only modeling methods. Sample selection bias has been
 previously explicitly considered only for some individual
 modeling methods (Arga?z et al. 2005, Dudik et al. 2005,
 Schulman et al. 2007).
 When the sampling distribution is not known, it can

 be approximated by combining occurrence records for a
 target group of species that are all collected or observed
 using the same methods. We evaluated this approach on
 a diverse set of 226 species and four modeling methods.
 For both statistical measures of model performance that
 we used, target-group background improved predictive
 performance for all modeling methods, with the amount
 of improvement being comparable to the difference
 between the best and the worst of the four modeling
 methods. We conclude that the choice of background
 data is as important as the choice of modeling method
 when modeling species distributions using presence-only
 data.
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