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C H A P T E R  O N E

Introduction

The fi elds of historical biogeography and ecological biogeography have long 

been paradoxically disparate and distant from one another, with different ter-

minologies, different concepts, and almost nonoverlapping sets of researchers. 

Ecological biogeography focuses on spatial pattern in the composition and func-

tioning of ecological communities, while historical biogeography attempts to 

reconstruct the history of areas and their biotas. Although some recent steps have 

narrowed gaps a bit, the two fi elds have long been quite distinct and discon-

nected, and spatial understanding of biodiversity has suffered as a consequence.

Differences between the two biogeographies are manifold: certainly, spatial 

scale is an important one, with most of ecological biogeography focusing at 

regional scales and most of historical biogeography at continental or even global 

scales. Another important difference is in treatment of temporal dimensions, 

with ecological biogeography focused chiefl y over time spans that are geologi-

cally instantaneous (i.e., in the present), but historical biogeography looking 

from the present back over evolutionary time, sometimes many millions of 

years. Although not without signifi cant exceptions (e.g., MacArthur 1972), 

these homonymous fi elds both have important insights to offer regarding the 

geography of biodiversity, yet have developed in large part independently until 

quite recently.

In recent years, however, an emerging body of work has begun to bridge 

between the two, building toward a more synthetic biogeography. Ecologists 

looking over broader spatial extents and into history, and systematists thinking 

about environmental dimensions and interactions among species, have come to 

understand that species’ distributions are a function of phenomena from both 

realms. Detailed thinking regarding areas of distribution has also provided a 

fascinating reawakening of interest in another classic concept, that of the eco-

logical niche. In effect, understanding areas of distribution of species in terms 

of their ecological requirements across multiple scales of space and time has 

provided an arena for a meeting of these two disparate disciplines. The impres-

sive impact on both fi elds of just the fi rst few years of this interaction suggests 

that their integration will have a bright future.
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2  C H A P T E R  1

PRACTICALITIES

Recent years have witnessed substantial increases in availability of species’ 

occurrence data, also termed “primary biodiversity data” or “presence data” or 

“occurrence data” (Soberón et al. 1996, Graham et al. 2004a, Soberón and 

Peterson 2004). This trend results from large-scale efforts to digitize and refer-

ence to geographic coordinates (“georeference”) the estimated 1–3 billion 

specimens held in world museums and herbaria (Chalmers 1996, Krishtalka 

and Humphrey 2000), as well as efforts to improve access to large observa-

tional data stores, at least for certain taxonomic groups (chapter 5). Presence 

data, as we will see in coming chapters, form the basis for most efforts to esti-

mate ecological niches. Publicly accessible Internet portals now allow access 

to on the order of 300 million primary biodiversity data records (Edwards 

2004).

Information regarding environmental variables is now similarly abundant. 

Petabytes (i.e., millions of gigabytes) of environmental information about 

 climate, topography, soils, oceanographic variables, vegetation indices, land- 

surface refl ectance, and so on, are available across almost the entire planet, and 

at increasingly fi ner resolutions (chapter 6). These datasets are being generated 

by agencies such as the European and U.S. space agencies, by the United Na-

tions, by university researchers (e.g., Hijmans et al. 2005), and by many na-

tional institutions (e.g., CONABIO 2009, INPE 2009, NRSC 2009).

Finally, powerful software allowing estimation of both areas of distribution 

and theoretical objects related to niches has been implemented. The work of 

pioneers like Grinnell, Hutchinson, and Austin suddenly became thriving re-

search areas linking ecological and historical dimensions of biogeography. In 

particular, these tools enable what has been termed “species distribution mod-

eling” (SDM; Guisan and Zimmermann 2000, Hirzel et al. 2002, Guisan and 

Thuiller 2005, Araújo and Guisan 2006), as well as the related (but by no means 

equivalent) endeavor called “ecological niche modeling” (ENM; Peterson et al. 

2002d, Soberón and Peterson 2005, Soberón 2007). These fi elds—the subject 

of this book—center on application of niche theory to questions about real and 

possible spatial distributions of species in the past, present, and future. In a 

very real sense, the availability of large quantities of data, technological devel-

opments like geographic information systems (GIS), and several computational 

tools are enabling a multitude of applications that are not only of biological 

importance, but that also can often be of extreme practical utility.

Nevertheless, many carefully pondered decisions are necessary before it is 

possible to turn these data and tools into interesting analyses and useful knowl-

edge with full scientifi c rigor. Many crucial methodological issues remain to be 
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explored and resolved, like the types of variables to be included, whether to use 

them in raw or transformed forms, whether to reduce dimensionality prior to 

analysis, what spatial and temporal resolution to use, and how best to assess 

model performance; all of these points are questions affecting niche modeling 

exercises. The answers to these practical questions depend on a rigorous con-

ceptual framework. After a period of development in which conceptual and 

methodological rigor took a back seat to rapid development of software and 

data resources, the time has come to take stock of the advances and propose a 

conceptual reorganization. All of this thinking is the subject of this book.

THIS VOLUME

We offer this volume as a fi rst synthesis of concepts in this emerging fi eld. In 

spite of hundreds of research contributions and increasing numbers of reviews 

and commentaries, no rigorous and quantitative conceptual framework and 

synthesis has been presented. This lack of synthesis is nowhere more notable 

than in the debate between groups of researchers using the same tools to ad-

dress the same questions, yet employing—whether knowingly or not—very 

distinct conceptual frameworks in the development of their analyses and con-

clusions. Such misunderstandings can be avoided, if a common language and 

thinking framework are available. This book represents the crystallization of 

years of thinking and work by a diverse suite of coauthors, all interested in the 

ecological, geographic, and evolutionary dimensions of geographic distributions 

of species.

We do not intend this book to serve as an exhaustive review of the burgeon-

ing literature on ecological niches and geographic distributions. Quite simply, 

just in the time in which we have been preparing this manuscript, hundreds of 

new papers have been published, making the idea of an exhaustive review a 

moving target that is probably impossible to achieve. Moreover, recent publi-

cation of a book by J. Franklin (2010), Mapping Species Distributions, does a 

commendable job of reviewing and synthesizing the vast literature on this 

topic. Our approach is more conceptual: we aim to offer a body of terminology 

and schemes by which to understand and discuss phenomena of distributional 

ecology; a common language is badly needed in a fi eld so rife with ill-defi ned 

jargon and loosely defi ned terms.

This book focuses on the complex relationships between ecological niches 

and geographic distributions of species, both across space and (perhaps to a 

lesser degree) through time. We provide a conceptual overview, which we hope 

will be of broad interest to researchers interested in diverse aspects of ecology, 
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biogeography, or other related fi elds. However, we focus much of this book on 

how that conceptual framework links to the emerging fi elds of ecological niche 

modeling and species distribution modeling, both correlative approaches to un-

derstanding ecological niches and geographic distributions.

We do not make any broad attempt to provide a similar overview or deep 

understanding of process-based, physiological approaches to estimating eco-

logical niches that other researchers are exploring—rather, we see the two ap-

proaches as complementary. The process-based approaches show considerable 

promise, and in some situations offer the only view possible into the funda-

mental ecological niches of species. However, such approaches remain in early 

stages of development and exploration. This book focuses on the correlative 

approaches, which we see as most broadly applicable to diverse questions re-

garding the ecology and geography of biodiversity phenomena.

The reader should not imagine that this process of fi nding a common lan-

guage has been easy. Indeed, even among the seven authors of this book (three 

biologists, three geographers, and a statistician), who have worked together for 

years, some strong differences of opinion still exist regarding terminologies 

and concepts. We have, however, achieved a high degree of concordance, and 

have been willing to look past our colleagues’ different views in striving for 

synthesis. Many of the insights that emerged from these debates concerned the 

relevance of ideas central to each of our respective backgrounds and skill sets, 

including integration of ideas from fi eld biology, morphology, systematics, ge-

netics, theoretical ecology, evolutionary biology, statistics, climatology, and 

geospatial science.

The result is this volume. We begin with a conceptual framework for think-

ing about and discussing the distributional ecology of species, which has in-

volved considerable exploration of the fi eld of population ecology, and has 

required revisiting several “sacred” texts, such as the fundamental early works 

of Hutchinson and Grinnell. A second section addresses the data and tools that 

have been marshalled in the early development of this fi eld. We avoid carefully 

the temptation to review and assess specifi c software tools, as we consider 

these to be transitory and less important than the base concepts. It is much 

more important that the fi eld have a consistent terminology and thinking frame-

work than to “know” that such and such program is the “best.” (Besides, as the 

reader will see in the chapters that follow, what appears to be the “best” fre-

quently is not what it appears, and is certainly context- and scale-dependent.) 

In the fi nal section, we provide a relatively brief overview of real-world situ-

ations to which these tools have been applied, to illustrate the promise of this 

new fi eld. Our hope is to move the discourse in this fi eld to a new level, once a 

common platform of ideas is established.
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Concepts of Niches

It has often been pointed out that the term “niche” disguises several concepts 

under a single label (Whittaker et al. 1973, Colwell 1992, Leibold 1995, Chase 

and Leibold 2003, Odling-Smee et al. 2003). Some authors, perhaps over-

whelmed by the broad variety and subtle shades of meaning assigned to the 

word, have advised that “niche is perhaps a term best left undefi ned” (Bell 

1982). We disagree: in science, arguments benefi t from precise and consistent 

usage of key concepts; otherwise, clear thinking is hindered. Using the same 

word to refer to different ideas leads to confusion, as the picturesque history of 

the word “niche” amply demonstrates. Besides, different senses of niche are 

appropriate to deal with different biological problems. As a consequence, sev-

eral niche concepts exist, and our fi rst task is thus to clarify and specify which 

concept we will be using and why. We will choose terminology and ideas best 

suited to the problem in which we are interested—namely, that of estimating 

and understanding areas of distribution of species.

One reason why “niche” has acquired a veritable bush of meanings is that, 

since the fi rst time it was used, ecologists have applied the term to analyze a 

very complex question: what combinations of environmental factors allow a 

species to exist in a given geographic region or in a given biotic community, 

and what effects does the species have on those environmental factors? Not 

only does the preceding statement refer to an intrinsically complex set of prob-

lems, but several of its terms can be interpreted and measured in a variety of 

ways. Moreover, the concept has been used at both geographic and local scales, 

most often assuming that the ensuing complications and differences should be 

obvious. For example, Grinnell (1917), studying the niche of the California 

Thrasher (Toxostoma redivivum) in relation to its area of distribution (this idea 

will be discussed later as the “existence” of the species), meant by the term niche 

the thrasher’s climatic and habitat requirements (the environmental factors) 

expressed geographically (fi gure 2.1). In a contrasting interpretation, Elton 

(1927) viewed the niche as the functional role of an animal on a community (its 

local effects): the existence was taken for granted, but the emphasis was placed 

on the “impacts.” These two early views of niche illustrate one of the main 
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causes of ambiguity of concept: stress on requirements at geographic scales 

versus stress on impacts at local scales (Chase and Leibold 2003).

After reviewing the history of niche concepts, Chase and Leibold (2003) 

concluded that much of the confusion surrounding the term results because 

“previous authors have not consistently distinguished between the responses of 

organisms to their environment and the effects of organisms on their environ-

Figure 2.1. Distribution of the California Thrasher (Toxostoma redivivum) in 

California, from Grinnell (1917). Approximate distributional limits of the three 

subspecies are shown with different shadings, and occurrences are shown as dots 

(for specimens) or triangles (for published records).

Specimans examined
Published records

1. Toxostoma redivivum sonomae
2. Toxostoma r. revivium
3. Toxostoma r. pasadenense

02peterson.005_022.indd   802peterson.005_022.indd   8 6/6/11   9:30 PM6/6/11   9:30 PM



C O N C E P T S  O F  N I C H E S  9

ment.” Indeed, this difference has both deep implications about the actual 

mathematical form of a multivariate niche defi nition and serious operational 

consequences, since certain variables related to requirements can be measured 

easily, whereas most variables related to impact require ad hoc experimental 

efforts.

Although attempting an exhaustive classifi cation of niche concepts based 

on the preceding ideas would be interesting, that task is not our purpose in this 

chapter. Rather, we intend to propose a formal and operational defi nition of a 

particular niche concept (which is naturally related to the problem of estimat-

ing areas of distributions), offer approaches to characterize and measure it, and 

use it as a conceptual and terminological basis for describing and understand-

ing much of the related practices of ecological niche modeling and species 

distribution modeling (Peterson 2006c). In this chapter, we explain the reasons 

for our choice of emphases, leading to a particular meaning and usage of niche. 

To accomplish this goal, we review briefl y the themes most important in under-

standing niche concepts, highlighting the meanings most appropriate to the 

purpose of this book.

MAJOR THEMES IN NICHE CONCEPTS

Recall Hutchinson’s (1957) defi nition of the fundamental niche of a species: a 

hypervolume of environmental variables, “every point of which corresponds to 

a state of the environment which would permit the species to exist indefi nitely.” 

Most differences in niche concepts depend on the formulation and relative 

importance given to three interrelated points, considered in turn later: (1) the 

meaning of “exist indefi nitely,” (2) what kinds of variables constitute the hyper-

volume, and (3) the nature of feedback loops between a species and the vari-

ables composing the hypervolume. Our defi nitions of niche are based on opera-

tional specifi cations of the preceding three points.

The “Existence” of a Species

As highlighted by Holt (2009), several ambiguities complicate the term “exis-

tence” of the species, as used in niche defi nitions. From a population ecology 

point of view, a species may exist for a period of time t
0 
� t � t

1
 in a place g of 

the world, if its total instantaneous growth rate dxg(t)/dt � 0 is on average non-

negative during t
0
 � t � t

1
 (Vandermeer 1972, Maguire 1973, Hutchinson 

1978). However, and disregarding stochastic factors and evolutionary change, 

the instantaneous growth rate is composed (see next chapter) of (1) an intrinsic 

growth rate rg that is by defi nition density-independent, (2) density-dependent 
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factors and the results of interactions with other species, and (3) the population 

structure that determines arrival of dispersing individuals to the locality g and 
that may allow existence of the species in places where rg � 0 (sink popula-

tions; Pulliam 1988 and 2000).

It is clear that quite-different combinations of the preceding factors may 

lead to a species “existing” [i.e., dxg(t)/dt � 0] or not in a given region over a 

given period of time. Holt (2009) pointed out that some of the major issues 

requiring clarifi cation are (1) the existence of Allee effects (reduced per-capita 

growth rate at small population densities) that will make regions where rg � 0 

impossible to invade because the fl ow of migrants is below the Allee threshold; 

(2) the possibility that, in regions of high instantaneous growth rate, population 

growth will lead to irreversible alterations of the environment because the pop-

ulation impacts its niche (Chase and Leibold 2003); and (3) situations may exist 

in which the instantaneous growth rate fl uctuates owing to stochastic variations, 

leading to a long-run growth rate (Lande et al. 2003) r̄ that differs from the 

physiologically defi ned r.

In view of the preceding, a unequivocal niche defi nition requires a great 

degree of detail about how the environment in g affects different components 

of the growth rates. One can defi ne a variety of niches (Hutchinson 1957, Pul-

liam 2000, Soberón 2007, Holt 2009) by focusing on the effects that the envi-

ronment has on different components of the growth rate. In the next chapter, 

we will defi ne niche concepts unequivocally based on how environmental vari-

ables affect some components of the instantaneous growth rate in the cells of a 

grid. However, fi rst, we need to discuss what kinds of variables are used to 

build the environmental niche space.

Types of Variables in Niche Space

Since Hutchinson’s seminal work, researchers have referred routinely to mul-

tivariate niche spaces. However, diverse types of niche variables are almost 

invariably mixed, often ignoring deep differences in their properties. For ex-

ample, Hutchinson (1957) defi ned the niche as “the set, in a multidimensional 

space, of environmental states within which a species is able to survive.” Here, 

“environmental states” are loosely represented as values along the axes of the 

n-dimensional niche hypervolume. However, the “environment” of a species 

consists of radically different factors, some of which cannot be represented 

simply as static axes. In particular, it is critical to distinguish environmental 

factors that are linked dynamically to the population of the focal species from 

those that are not; in other words, variables describing environmental aspects 

that are impacted by the species (by consumption or other modifi cations) must 

be distinguished from those that may affect the fi tness of the species without 
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being consumed or changed by it. The reason for this distinction is simple: the 

position of a point describing an environmental state in a noninteractive (non-

linked) space of variables remains fi xed regardless of the changes in numbers of 

a population of a species. When dynamic (linked) interactions exist, however, 

an initial point in a space of linked environmental variables (like consumed 

resources) actually traces a trajectory that depends on the changing numbers in 

the population of the species. This difference requires distinct types of mathe-

matical objects to describe niche space.

The fi rst author to notice the need to distinguish between dynamically linked 

variables and unlinked “conditions” was Hutchinson (1978), in a seldom-

quoted chapter. He drew attention to deep differences between scenopoetic (from 

the Greek roots for “setting the stage”) variables, as he called them, which are 

not consumed and for which no competition occurs, and others that can be 

dynamically consumed and may be the object of competition, which he termed 

bionomic variables (an unfortunate choice of term; see the following). Explic-

itly or implicitly, other authors have made this or parallel distinctions between 

linked and nonlinked variables (Austin 1980, James et al. 1984, Austin et al. 

1990, Jackson and Overpeck 2000, Begon et al. 2006), although they may dif-

fer in emphasis. For example, Austin (1980) and Austin and Smith (1989) re-

ferred to “direct gradients” as those variables having direct physiological im-

pacts on a population but that are not consumed, and offered as an example pH 

(although pH can be modifi ed directly by the presence of a population without 

being consumed; Hinsinger et al. 2003). Likewise, Begon et al. (2006) defi ned 

“conditions” as abiotic environmental factors that infl uence the functioning of 

living organisms but are not “consumed,” in contrast to resources. They also 

used pH as an example.

To defi ne multidimensional environmental spaces in this book, we will 

make the crucial distinction between variables that are dynamically modifi ed 

(linked) by the presence of the species versus those that are not. In other words, 

we follow what we consider to be the spirit of Hutchinson’s (1978) chapter, 

which is an important point that merits reiteration. The distinction we use is not 

about biotic versus abiotic variables, or consumed resources versus not con-

sumed conditions. Instead, we construct the multivariate environmental spaces 

for our defi nitions based on variables that are not dynamically affected by the 

species, like climate, topography, and perhaps some habitat features, in contrast 

to variables that are dynamically modifi ed (linked), such as consumed re-

sources (Harper 1977, Austin 1980, Austin and Smith 1989, Begon et al. 2006) 

or those that are subject to modifi cation by niche construction (see Odling-

Smee et al. 2003, for a review) or niche destruction (Holt 2009). We use the 

term “dynamically linked” in the sense of terms that appear as parameters in 
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population equations versus appearing as dynamic state variables (Meszéna et 

al. 2006), as we will see in the next chapter. Following the spirit of Hutchin-

son’s (1978) chapter, and considering more recent usage (Jackson and Over-

peck 2000), to avoid confusion, we call nonlinked variables “scenopoetic.”

Several good reasons exist for choosing this criterion for distinguishing 

variables: fi rst, scenopoetic, unlinked variables can be used to construct multi-

variate environmental spaces in which different niches are simple subsets. As 

we will see later, niches defi ned using nonscenopoetic, linked variables require 

much more elaborate mathematical defi nitions. Second, at coarse spatiotem-

poral resolutions (e.g., defi ned in years, and on the order of 1 km2 or coarser), 

huge databases are available that summarize important scenopoetic variables 

for the entire planet; nonscenopoetic variables, on the other hand, will gener-

ally have to be generated for each particular situation.

Scenopoetic variables are typically measured at broad spatial extents (i.e., 

broader than ~104 km2) and low spatial resolutions (e.g., 100 to 103 km2; chap-

ter 6). Obviously, the same factor (light availability for plants, for example), 

may be regarded as scenopoetic at a geographic scale (e.g., solar radiation), but 

dynamically linked at another scale (e.g., light competition among plants in 

light gaps). Still, we explore the feasibility and utility of this simple distinction 

between variables, to the extent that it is useful.

In terrestrial environments, the most obvious examples of scenopoetic vari-

ables are climatic and geomorphological variables, which are abiotic and coarse-

grained. Austin’s (1980) distinction between direct and indirect gradients (see 

chapter 6) remains valid: elevation, for example, affects species indirectly 

through atmospheric pressure, temperature, UV radiation, and other effects 

(Körner 2007), but whether the effect is direct or indirect, scenopoetic vari-

ables are not dynamically linked to changes in the population of a species. 

Clearly, these variables change over time, but following dynamics not related 

directly to the numbers of one or even a few species. Hence, on ecological 

timescales relevant to individuals and populations, they may be regarded as 

more or less constant, and therefore can be represented meaningfully by static 

sets of numbers.

James et al. (1984) used vegetation structure variables in the same sense: 

these variables may be biotic in nature, but they are neither consumed nor 

modifi ed dynamically (linked) by populations of Wood Thrushes (Hylocichla 
mustelina) in the eastern United States. The structure of a forest is probably 

unaffected or affected only very slowly, by numbers of most forest-dwelling 

species. The ever-existing exceptions can be cited—for instance, moth out-

breaks may defoliate a forest completely (Elkinton and Liebhold 1990).

short
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The term “bionomic” that Hutchinson (1978) used to refer to nonscenopo-

etic variables is not precise enough in our context, because we do not focus on 

whether the variable is biotic. Rather, we propose to focus on whether variables 

are linked dynamically to the population levels of the species in question. Some 

abiotic environmental factors can be consumed as resources (nutrients for ex-

ample) or modifi ed dynamically by the activities of individuals in a population 

(Harper 1977). Having said that, however, most examples of scenopoetic vari-

ables we will be using are indeed abiotic, and most nonscenopoetic examples 

are related to biotic interactions. It may be possible to regard some very high-

resolution variables as scenopoetic, in the sense of their not being impacted 

by the species in question (e.g., vegetation structure), but these exceptions are 

probably rare.

The multidimensional spaces of scenopoetic variables that exist in a given 

region, in a given time, we henceforth call “E-spaces”; in most cases, E-spaces 

are composed of coarse-grained variables, if only owing to data availability (see 

G-space discussions later in this chapter). An example appears in fi gure 2.2, 

and in chapter 6 we will discuss in detail what variables form E-spaces and 

several problems of constructing them. In conclusion, and anticipating more 

detailed discussions later, our selection of environmental variables to defi ne 

niche spaces will be based on scenopoetic variables that infl uence, at a geo-
graphic scale, the intrinsic and instantaneous growth rates of a species.

Niche as Requirements versus Niche as Impacts

The previous section developed one aspect of the idea that a major source of 

confusion about niche concepts is the disregard of the “impacts” part of the 

interactions between a species on its environment (Chase and Leibold 2003). 

By choosing to build environmental space using noninteractive variables that 

affect the density-independent component of population growth rates, we place 

ourselves fi rmly in the “niches as requirements” school for the purposes of this 

book, but this choice does not imply that a more comprehensive defi nition of 

niche including impacts is not needed.

Inclusion of consideration of impacts is fundamental (Leibold 1995), since 

at local scales species consume resources and interact with one another. At 

geographic scales, separating the requirements and the impacts components of 

niche may be a valid simplifi cation (the Eltonian Noise Hypothesis, see discus-

sion in chapter 3; see Odling-Smee et al. 2003, for what may be a dissenting 

view). At a more local scale, however, requirements and impacts cannot be 

separated easily, and even at geographic scales, local effects may be felt. For 

example, Leathwick and Austin (2001) presented evidence that Nothofagus 

short
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beeches have competitive effects on other species. Such effects, although local 

in mechanism, may at times have geographically discernible results.

Recently, a discussion of niche in the context of dynamically linked factors 

has been offered by Chase and Leibold (2003). They envisioned environmental 

spaces with resources and predator numbers as axes (sometimes also including 

static “stressors,” related to scenopoetic variables) and defi ned subsets of these 

spaces as different classes of niches. However, since within a community, 

 resources and consumers often show dynamic relationships, niches cannot be 

defi ned without mention of the dynamic effects that consumers have on the 

abundance and potentially on the spatial distribution of the resource and vice 

versa. To represent the environmental requirements of a population and the ef-

fects of that population on the environment simultaneously, a mechanistic model 

of the interaction is required (Leibold 1995). Using mechanistic consumer-

Figure 2.2. Projection of North and South America in an environmental space 

composed of three bioclimatic dimensions (annual precipitation in mm, mean 

monthly temperature in °C, precipitation of wettest month in mm). Each point 

corresponds to the environmental combination represented in one of 68,000 grid 

cells at 0.17° spatial resolution (climate data from Hijmans et al. 2005).
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resource models (MacArthur 1972, Tilman 1982), Chase and Leibold (2003) 

formalized a defi nition of niche in terms of both the species’ environmental 

requirements and the species’ impacts on the environment. Given the analyti-

cal complexities of the population dynamics of multiple species and multiple 

resources for each, they used a graphical device based on plotting simplifi ed 

zero-net-growth isoclines for consumers in a two-resource space, together with 

resource-supply points and impact vectors.

In other words, even for the simplest cases, the niches defi ned by Chase and 

Leibold (2003) require knowledge of the full instantaneous growth rate (as op-

posed to just the intrinsic growth rate) in a space that is being modifi ed con-

tinuously by the species of interest. This approach is theoretically very fruitful, 

but obtaining data about the dynamic (linked) parts of these niche spaces is 

seriously complicated, since knowledge of po pulation dynamics is required. 

For all the preceding arguments, therefore, we see a fundamental advantage in 

defi ning an environmental space in terms only of noninteractive requirement 

variables. We suggest that this approach is valid at the very least at coarse spa-

tial resolutions.

Scaling of Niches

For practical reasons, as discussed earlier and in chapter 6, most scenopoetic 

variables are measured at coarse spatial resolutions. As such, they are naturally 

suited to addressing macroecological and biogeographic problems. Whittaker 

et al. (1973), discussing the “place” and “role” meanings of niche, proposed 

a multidimensional environmental space composed of both “niche” (meaning 

role) and “habitat” (meaning place) variables that correspond roughly to the 

bionomic and scenopoetic variables of Hutchinson (1978). Whittaker et al. 

(1973) called this space the “ecotope.” Leaving aside the problem mentioned 

earlier of dynamic (linked) variables requiring more complicated representa-

tions of niche space than unlinked (scenopoetic) variables, a problem emerges 

regarding the spatial scales at which different variables are measured. As men-

tioned by Araújo and Guisan (2006), the problem of obtaining detailed data 

about species’ interactions over geographic scales is daunting owing to the very 

high spatial turnover in the details of the interactions, which may even change 

sign or direction over short distances. For instance, the interaction between the 

moth Greya politella and the wildfl ower Lithophragma parvifl ora varies from 

mutualistic to antagonistic over the span of their distribution (Thompson 2005). 

Therefore, we suggest that a natural scaling exists for spatial resolutions, in 

which many important scenopoetic variables are manifested at coarse spatial 

resolutions, while details of resource consumption and species’ interactions are 

manifested at local scales commensurate with the activities of individuals.
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In this vein, Pickett and Bazzaz (1978), Silvertown (2004), and Silvertown 

et al. (2006) developed the idea of α, β, and γ niches. These authors propose a 

hierarchy of niche defi nitions based on the scales at which different ecological 

processes operate: the α niche is the region of a species’ realized niche cor-

responding to the local scale where interactions among species occur. The β 

niche is the region of a species’ niche corresponding to the habitat where it is 

found (Silvertown et al. 2006). Finally, the γ niche is the geographic range of a 

species. These ideas are closely related to those of Whittaker et al. (1973), in 

that they acknowledge a hierarchy of processes related to community-level 

interactions, and habitat- and geographic-level determinants, and also in that 

they address niche defi nitions by defi ning a multidimensional space composed 

of mixtures of types of variables. Although we think that these ideas are headed 

in a fruitful direction, for the reasons already discussed, we fi nd theoretical and 

practical problems with including both scenopoetic and dynamically linked 

variables in the same niche hypervolume, especially since they are now con-

founded additionally by the geographic variables of the γ niche (e.g., the spatial 

confi guration of geographic barriers to dispersal).

Rather, it is probably more sensible to defi ne two environmental hypervol-

umes. One is composed of scenopoetic variables, at the scales and resolutions 

at which this defi nition seems more reasonable (i.e., the γ niche, and perhaps 

the β niche, if scenopoetic variables can defi ne habitats). The other, comple-

mentary, hypervolume comprises bionomic variables sensu Hutchinson (1978), 

at the local scales at which these dimensions are more meaningful and that 

correspond to the α niche. This approach will be our framework in this book. 

Therefore, in the terminology of Silvertown et al. (2006), this book is about γ 

and β niches.

GRINNELLIAN AND ELTONIAN NICHES

The preceding discussion aimed to clarify the meaning of “niche” underpin-

ning this book. The main meaning is explicitly geographic in nature, and is 

based on E-spaces composed of scenopoetic variables taken as conditions or 

requirements. These niches have been called “Grinnellian” (James et al. 1984) 

or “environmental” (Austin 1980, Austin and Smith 1989, Jackson and Over-

peck 2000). We retain the term “Grinnellian niche” in view of the emphasis 

that Grinnell placed on niche as a tool in understanding geographic distribu-

tions of species. We are aware that Grinnell mixed to some extent features of 

the “role” and the “place” interpretations of the niche (Whittaker et al. 1973) 

and scenopoetic and bionomic variables, and that in its “role” part, he empha-

02peterson.005_022.indd   1602peterson.005_022.indd   16 6/6/11   9:30 PM6/6/11   9:30 PM



C O N C E P T S  O F  N I C H E S  1 7

sized the “requirements” view (Leibold 1995). However, since “Grinnellian 

niche” has already been used in applications to geographically oriented situa-

tions with nonlinked environmental variables, we retain it throughout this book.

Of course, other extremes of niche meaning are possible and important; in 

particular, as we saw, niche concepts exist that are oriented toward community-

ecology questions, defi ned at local scales, and including models of resource 

consumption and impacts. We will refer to this scale and meaning as “Eltonian 

niches.” One of the best and most synthetic expositions of modern Eltonian 

niche theory is that by Chase and Leibold (2003). Ideally, to understand fully 

the geographic distributions of species, both Grinnellian and Eltonian niche 

elements are needed.

Do Empty Niches Exist?

The preceding discussion about niches as properties of the environment versus 

niches as properties of the species has led in the past to the question of whether 

such a thing as “empty niches” can exist (Colwell 1992). Unless rigorous defi -

nitions of terms are provided, of course, this question remains merely seman-

tic. Grinnellian niches, defi ned as subsets of scenopoetic environmental spaces, 

are entirely different entities in this sense than Eltonian niches, defi ned in 

terms of zero-growth isoclines, impact vectors, and supply points. As such, the 

answer to the question depends, at the very least, on which of these two mean-

ings is involved.

It is clear that—strictly speaking—neither Grinnellian nor Eltonian niches 

can be operationalized without reference to a particular species. Indeed, in the 

Grinnellian case, niches represent subsets of elements of the E-space defi ned 

in terms of the effects of certain variables on population growth rates of the 

species in question. In the Eltonian case, on the other hand, it is also only in 

terms of a given species in a given community context that resources can be 

specifi ed, a consumption model proposed, isoclines obtained, impact vectors 

estimated, and the niche thus identifi ed. In this sense, no “empty” Grinnellian 

or Eltonian niches can exist.

However, it is easy to produce examples of realistic and biologically mean-

ingful E-spaces using variables known to be important to distributions of large 

classes of species, without specifi c mention of any species in particular. Figure 

2.2 is an example in which all combinations of three important bioclimatic 

variables across the entire Western Hemisphere are presented. The Grinnel-

lian niche (defi ned in terms of these three variables) of any species living in the 

Americas will be a subset of that E-space. Hence, in a very real sense, fi gure 

2.2 displays the domain available for Grinnellian niches in the Americas for the 

variables considered; some sectors of this space (even if suitable) may indeed 
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be unoccupied by a species in the region for a variety of reasons (see the fol-

lowing and chapter 8).

In contrast, it is very hard to illustrate a realistic zero-growth isocline Elto-

nian niche in resource space without reference to a particular species. (Present-

ing a hypothetical Eltonian niche, however, based only on verbal defi nitions of 

niches as roles or functions in a community, is not diffi cult.) This difference 

is a consequence of the fact that Grinnellian niches may also be regarded as an 

attribute (measured through scenopoetic variables, and certainly with heritable 

components related to the species’ physiology) of the area occupied by the spe-

cies across its geographic range, whereas Eltonian niches are attributes of in-
teractions between a species and its local resources and other species. Hence, 

while it is intuitive and reasonable to refer to empty Grinnellian niches, it is 

probably meaningless to discuss empty Eltonian niches (Colwell 1992).

Hutchinsonian Ideas Applied to Grinnellian and Eltonian Niches

Hutc hinson (1957) defi ned two subtypes of his multidimensional niches—the 

fundamental and the realized. For Hutchinson, the “fundamental niche” was 

the set of “all the states of the environment which would permit the species S 

to exist” (Hutchinson 1957). The “realized niche,” on the other hand, is the 

subset of the fundamental niche corresponding to environmental conditions 

under which species S is a superior competitor and can persist (Hutchinson 

1957) in an interacting environment. Chase and Leibold (2003) provided rigor-

ous defi nitions of Eltonian requirement-impact niches, and found that funda-

mental and realized niches can be defi ned in their terms. It is also possible and 

useful to analyze this dichotomy in relation to Grinnellian niches, as we will see 

in chapter 3.

An important side note, however, is that other sorts of niches not considered 

by Hutchinson (1957) can be conceptualized for Grinnellian niches defi ned in 

terms of E-spaces and considering geographic extents. Hutchinson originally 

discussed niches in abstract and nonspatial ways, without providing actual ex-

amples and mostly ignoring the importance of scale and geography. Later, in 

his “What is Is a Niche?” chapter, Hutchinson (1978) provided real-life ex-

amples of niches, but still refrained from outlining how consideration of broad 

spatial and temporal scales might introduce new possibilities.

Jackson and Overpeck (2000), working with scenopoetic environmental 

spaces and following the main ideas of Hutchinson, defi ned the fundamental 

niche as the “subset of the environmental space defi ned by the n dimensions, 

consisting of the suite of combinations of variables that permit survival and re-

production of individuals.” This defi nition is perfectly compatible with Hutchin-

son’s ideas; however, it begs the question of how can one estimate “the suite of 
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combinations” of favorable environments that composes the fundamental Grin-

nellian niche. This fundamental niche can, after solving several technical dif-

fi culties, be estimated via physiological experiments or biophysical fi rst prin-

ciples (Sutherst 2003, Kearney and Porter 2004, Crozier and Dwyer 2006, 

Buckley 2008). The fundamental niche therefore is an expression of the physi-

ology and behavior of an organism, and its defi nition can be obtained indepen-

dently of the localities where a species is observed.

An important contribution to Grinnellian niche theory is the realization by 

Jackson and Overpeck (2000) that the fundamental niche may include combi-

nations of environmental variables currently missing in the existing E-space, 

which is constrained by geography, and changes continuously across evolu-

tionary time periods (Manning et al. 2009). As a consequence, E-space may 

include large regions of biologically sensible, but currently lacking, combina-

tions of variables. For example, in fi gure 2.2, we can observe a large gap cor-

responding to high precipitation and intermediate temperatures—areas holding 

these conditions simply do not presently occur in the Western Hemisphere. 

However, nothing is absurd in considering that a species may have physiologi-

cal tolerances that permit maintenance of populations under some of these non-

existent environmental combinations. Consider, for example, species distributed 

in archipelagos of small islands with limited sets of environments represented, 

even though the species’ distributional possibilities are much broader. There-

fore, it makes sense to defi ne a “potential niche” (Jackson and Overpeck 2000) 

that is quite simply the intersection of the existing E-space (or the “existing 

environmental space”) with the fundamental niche—in other words, the portion 

of the fundamental niche that actually exists somewhere in the study region at 

the time of analysis. As we will discuss later, the term “potential” is somewhat 

unfortunate in this context, but the concept is very useful, so in chapter 3 we 

rechristen this concept as the scenopoetic existing fundamental niche. Also, as 

discussed in chapter 3, other perfectly sensible Grinnellian niches not consid-

ered by Hutchinson can be defi ned by considering dispersal and movement in 

spatially explicit analyses.

ESTIMATING GRINNELLIAN NICHES: PRACTICALITIES

Key to our exposition of many ideas in this book is a relationship between en-

vironmental and geographic spaces. By defi ning a geographic space (G-space), 

at a given resolution, and at a particular point in time, and by intersecting that 

area with digital data layers of environmental data, it is possible to extract sub-

sets of the existing E-space that correspond to different regions of G-space. 
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Conversely, GIS operations can be used to map in G-space all the regions that 

correspond to a given subset of E-space. Note that, for every point in G-space, 

one and only one point exists in E-space, whereas for each point in E-space 

more than one point may exist in G-space. This dual-space correspondence is 

illustrated in fi gure 2.3. E-space is changing all the time (Jackson and Over-

peck 2000) according to the dynamics of global geology, climate, and physical 

environment in general.

The dramatic recent improvements in availability of data have enabled the 

work of pioneers like Grinnell, Hutchinson, and Austin to develop into a thriv-

ing area of macroecology and biogeography. In particular, this fi eld includes 

what has been termed “species distribution modeling” (SDM; Guisan and 

Zimmermann 2000, Hirzel et al. 2002, Araújo and Guisan 2006), as well as the 

related (but by no means equivalent) endeavor named “ecological niche model-

ing” (ENM; Soberón and Peterson 2005, Soberon 2007). These fi elds—the 

subject of this book—consist of application of niche theory to questions about 

the observed and potential spatial distributions of species in the past, present, 

and future. In a very real sense, the availability of large quantities of data, tech-

nological developments like GIS, and several computational tools are enabling 

a multitude of applications that are not only of biological importance, but also, 

as we will see, that can often be of extreme practical utility.

SUMMARY

The general idea of “niche” refers to the ecological conditions that a species 

requires to maintain populations in a given region, together with the impacts 

that the species has on its resources, other interacting species, habitat, and en-

vironment. The different emphases that various schools of thought have placed 

on different components of this central idea have lead to a variety of particular 

niche concepts. For understanding of geographic distributions of species, two 

interpretations of the idea are important. The fi rst, with roots in the work of 

Joseph Grinnell, emphasizes noninteractive unlinked variables measured mostly 

Figure 2.3. Correspondence of geographic and environmental spaces, showing 

variation in mean monthly temperature and annual precipitation across the Ameri-

cas in geographic and environmental dimensions. Cell resolution is 0.25°, or 

roughly 27 km at the Equator. The climatic data are drawn from the WorldClim 

dataset (Hijmans et al. 2005). An example of environments showing moderate 

temperature and high precipitation is shown in black in both spaces.

02peterson.005_022.indd   2102peterson.005_022.indd   21 6/6/11   9:30 PM6/6/11   9:30 PM



2 2  C H A P T E R  2

at coarse spatial grain. These dimensions are the scenopoetic variables of 

G-space. Evelyn Hutchinson and are very important in determining the broad 

aspects of species’ distributions. Here, niches and distributions are estimated 

and visualized in associated geographic (G) and environmental (E) spaces. 

These niche dimensions (the Grinnellian niche, in effect) can be measured 

using data available in large quantities and estimated operationally. Another 

important perspective on the niche concept emphasizes impacts of a species 

on its environment, via linked variables and phenomena that are generally 

measured at fi ner spatial grains, which can be termed the “Eltonian niche.” In 

this book, we focus on Grinnellian niches, as our interests lie primarily at geo-

graphic extents and resolutions.
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C H A P T E R  T H R E E

Niches and Geographic Distributions

In chapter 2, we began developing and exploring a concept of niche that em-

phasizes multidimensional spaces of scenopoetic variables, typically measured 

at coarse spatial resolutions and over broad geographic extents. Such a niche 

concept not only has had a long and fruitful tradition in ecology, but also pro-

vides a natural connection to the study of geographic distributions of species 

and the broader fi eld of biogeography. In this chapter, we develop this idea in 

greater detail.

First, we must consider the concept of geographic distribution, or range, of 

a species, and the approaches available by which to measure it. Ranges are 

usually represented as maps, but maps of what? In a thought experiment, we 

could make all individuals of a species fl uoresce and observe them from space 

(Brown 1995). We could then defi ne a grid on the surface of the planet, and 

agree that the set of all cells within which fl uorescent dots can be detected dur-

ing a certain time interval constitutes the distribution of the species. Even such 

a detailed, pointillist map, however, would be a static simplifi cation of the 

complex spatial and temporal footprint within which individuals of a species 

are distributed on Earth (Brown 1995).

It is not possible to follow each individual at the spatial resolution of its 

movements, except, perhaps, for a very few large-bodied and high-profi le spe-

cies (Maurer and Taper 2002). As a consequence, retreat to coarser resolutions 

becomes necessary, as well as adoption of conventions about which individuals 

and populations will be regarded as comprising the species’ distribution—e.g., 

breeding versus migratory populations, or source versus sink populations 

(Udvardy 1969). The concept of the distribution is then related intrinsically to 

the resolution (grain) at which the grid is defi ned (Erickson 1945, Mackey 

and Lindenmayer 2001, Maurer and Taper 2002, Gaston 2003), although no 

single grid resolution can be taken as the “right” one (Gaston 2003): quite 

simply, distributions are scale-dependent. Therefore, we can defi ne the distri-

bution of a species as the set of all grid elements in which, within a given 

sampling time period, the probability of recording an individual of that species 

exceeds a given threshold. In some situations, to be more specifi c, it may be 
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more important to emphasize “reproductive populations,” rather than mere 

presence of individuals.

In sum, the concept of the distribution of a species includes the ideas of 

presence of individuals, presence of reproductive populations, and probability 

of detection, all considered at spatial and temporal resolutions and extents that 

are normally relatively coarse and broad, respectively. In what follows, then, 

the operational concept of distributional area of a species will be subsets of 
geographic space in which the presence of individuals or populations of a spe-
cies can be detected. Some other areas, lacking observable populations or indi-

viduals but otherwise suitable, can also be defi ned. Relationships between 

areas of distribution and niches therefore depend on how ecological properties 

of species delineate subregions of the world for each species.

RELATIONS BETWEEN ENVIRONMENTAL

AND GEOGRAPHIC SPACES

Let us go back to the two spaces introduced in chapter 2. One is a “geographic 

space,” denoted by G, which is composed of cells (� grid cells or pixels) cov-

ering a particular region. This space is usually two-dimensional (and possibly 

three-dimensional in some future applications), and the grid is characterized by 

a particular extent and a particular resolution (� grain). In most applications 

discussed later in this book, the grain is typically 1 km2 per cell or more. The 

corresponding “environmental space” of environmental variables, at a given 

time, is denoted by E. This space is defi ned by a suite of environmental attri-

butes, such as climate, solar radiation, topography, and so on, all of which are 

generally characterized in relatively coarse environmental variables (see chap-

ter 6). These dimensions are the scenopoetic variables of Hutchinson (1978). 

Hutchinson (1957) called G the “biotope.” The linkage between environmental 

niches and the corresponding biotopes has been termed “Hutchinson’s Dual-

ity” (Colwell and Rangel 2009). Now, we will explore this set of concepts in 

more formal terms.

Since one can take measures of v scenopoetic variables in each cell g in G 

(or in symbols, g ∈ G), we can defi ne vectors denoted by e→g � (e
1
, e

2
, . . . ev)g, 

one for each cell in G, which describe the environmental characteristics of 

cell g. The space of all existing values of e→g comprises the environmental space 

denoted as E. Jackson and Overpeck (2000) called E the “realized environ-

mental space,” noting that in geological time the set of environmental combi-

nations existing is dynamic, and can change signifi cantly through time. We refer 

to it simply as E.
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Particular environments may be repeated in different geographic regions 

(Aspinall and Lees 1994), so the number of elements (i.e., the “cardinality,” 

denoted by vertical bars) of E and G may not be the same. Whether environ-

ments are repeated or not depends on the degree of heterogeneity of the envi-

ronmental gradients, the resolution of the grid, the number of variables involved, 

and the precision with which they are measured. When many variables mea-

sured with high precision at relatively high resolutions are used to characterize 

the grid, in general, |E| � |G|.
Varying grid resolution creates an instance of the Modifi able Areal Unit 

Problem (MAUP; Fotheringham et al. 2000), a diffi cult conceptual problem in 

geography. Indeed, by changing grid resolution, different values of spatial sta-

tistics may be obtained (Openshaw and Taylor 1981). In the context of this 

book, this issue means that changing the grid may lead to distinct estimates 

of the niche of a species. The problem may not be very serious (Guisan et al. 

2007), but neither is it likely to be trivial. In any case, the resolution and posi-

tion of the grid, the precision at which variables are measured, and the methods 

for any changes in resolution should be stated explicitly. Otherwise, compari-

sons among results lack essential information.

Figure 2.3 presents an example of these two linked spaces. In that fi gure, a 

geographic space G is depicted with an extent covering the Western Hemi-

sphere and resolution of cells of 0.25° (roughly 27 km on a side at the Equator). 

The corresponding space E is represented here by two climatic variables (mean 

annual temperature and annual precipitation) drawn from the WorldClim data-

set (see chapter 6). In this case, because only two variables are used, and with 

only three signifi cant digits, repeated environmental combinations are present, 

and |E| � |G|. In this example, the number of cells, h � |G| � 138,223, which 

exceeds the number of distinct environmental combinations |E| � 98,432. If 

three or more WorldClim environmental variables are used to characterize E, 

however, no repeated environments are present, and |G| � |E| � 138,223.

Note that, with suitable tools such as GIS, for every spatial subset G′ ⊂ G, 

it is simple to fi nd the environmental subset of E associated with G′. In other 

words, a function exists η: G → E that maps geography onto environment, or, 

in Hutchinson’s (1957) terminology, biotopes onto environments. Implicitly, 

one assumes that it is the biotope of a particular species that is mapped by η; in 

this case, the environment would be a Grinnellian niche. The environment at a 

specifi c location g can be denoted η(g) � e→g. We can denote the environments of 

sets of cells in symbols as η(G′) � {η(g)|g ∈ G′}, which is termed in mathemat-

ics the “direct image” of G′. The inverse operation maps sets of environments 

onto sets of geographic cells, and is defi ned as η–1(E′) � {g ∈ G|e→g ∈ E′}. In 

other words, η–1(E′) maps particular environments onto biotopes, or environ-
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mental space onto geography. Both functions, once again, can be implemented 

conveniently via GIS software, as was done to produce fi gure 2.3. However, 

several subtleties related to mapping continuous variables in discretized space 

need to be considered, such as mapping many-dimensional spaces onto fewer-

dimensional subspaces, and issues related to the extremely different topologies 

(i.e., confi gurations) of E and G (Aspinall and Lees 1994, Stockwell 2007). 

Some of these problems will be discussed in detail in chapter 8.

THE ECOLOGICAL EQUATIONS

We have already discussed how distributional areas of species relate to the way 

in which individuals of the species are themselves distributed. We can begin 

exploring how spatially explicit population growth patterns can be related to 

variation in the ecological characteristics of species. Several approaches have 

been explored to achieve this relationship. For the sake of clarity, we will 

 approach the problem fi rst using a classic Lotka-Volterra phenomenological 

formulation. However, as will be shown later, for a fuller characterization, the 

Lotka-Volterra formulation should be replaced by a mechanistic consumer-

resource model (MacArthur 1972, Tilman 1982, Chase and Leibold 2003, 

Meszéna et al. 2006).

The Problem of Multiple Resolutions

We consider the situation of i � 1, 2, . . . , s interacting species that inhabit G, 

which in turn is partitioned into a grid of h cells, g � 1, 2, . . . , h, of a certain 

resolution. In practice, as we will see in chapter 6 and in many examples ex-

plored in this book, the resolution of the grid is relatively coarse. Indeed, given 

limitations of data availability and storage, as well as of computation, we will 

seldom fi nd cells smaller than 1 km2 in continental applications; indeed, in 

many cases, the resolution in such studies is on the order of 10–100 km2 or 

coarser.

From a theoretical standpoint, if models are to be fully relevant, it is impor-

tant to acknowledge that the resolution of the grid over which models are fi tted 

should ideally be commensurate with the scale of the resource-consumer inter-

actions characteristic of the Eltonian niche, as outlined in chapter 2. Essen-

tially, this assertion means that at least two resolutions are relevant to under-

standing the relationship between niches and distributional areas. The fi rst is 

the spatial scale best suited to studying resource consumption and the results 

of biotic interactions. Typically, this resolution is that at which Eltonian niches 

are expressed, which for many terrestrial vertebrates and plants is around 10–6 
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to 10–2 km2. However, this resolution is impractical when attempting to express 

areas of distribution, so one must aggregate thousands of the cells at the Elto-

nian resolution to reach grain sizes that are meaningful for describing geo-

graphic ranges. This rescaling of resolutions is one of the main theoretical prob-

lems challenging efforts to link Grinnellian and Eltonian niches. Of course, 

we are highlighting the extremes of a continuum, and the details will depend 

on the species and its autecology; still, the distinction is instructive, and so we 

explore it.

Phenomenological Equations Relating Areas and Niches

Let us then explore factors affecting population growth rates of species in a 

spatially explicit grid of Eltonian resolution, using ideas fi rst presented by Van-

dermeer (1972), and then developed for simplifi ed environmental gradients by 

Holt et al. (2005 and 2009), and Pulliam (2000). The idea is to use spatially 

explicit population equations to represent the distribution of a species in space 

and then calculate the niches on the basis of the environments occurring in the 

region that the species is capable of occupying, actually or potentially.

Let (1/xi,g)(dxi,g/dt) be the per-capita growth rate of species i in cell g, where 

xi,g is the density of species i in cell g. Ignoring movements of individuals of 

the species among cells, the growth rate is the difference between an intrinsic 

growth rate (r) and a regulatory term φ that depends on the densities of all other 

species:

 1 dxi,g —– —— � ri,g(e
→
g) – φi,g(e

→
g, R

→

i,g; x→g) (3.1)
 xi,g dt

The vector e→g represents the values of the ν scenopoetic variables that affect the 

growth rates of all species under consideration. The vector R
→

i,g represents equa-

tion parameters related to interactions with other species (including resources), 

which we will call, for lack of a better term, “biotic parameters.” Later, we 

present a more explicit interpretation in a mechanistic resource-consumer model. 

The function φi,g(e
→
g, R

→

i,g; x→g) represents the regulation term (described later) of 

equation 3.1 (Meszéna et al. 2006). This overall function is directly related to 

the Eltonian niche. We now proceed to explore x→g.

In the classic niche literature, the only population interactions considered 

are competitive and predator-prey interactions. The inclusion of positive (mu-

tualistic) interactors, however, represents an important gap in niche theory (Col-

well and Fuentes 1975, Araújo and Guisan 2006). Although we acknowledge 

this gap, we restrict our discussion to negative interactions, since available the-

ory regarding Eltonian niches has disregarded mutualism almost entirely (Chase 

and Leibold 2003; but see chapter 8). Including such classes of interactions will 
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in all likelihood alter many concepts in niche theory. In general terms, then, 

φi,g is a function of the vector x→g, which represents the population densities of 

all species occurring at a given time in cell g.

The still-not-spatial equation 3.1 expresses the Grinnellian and the Eltonian 

niche effects in contrasting ways: the intrinsic growth rate ri,g(e
→
g) depends only 

on scenopoetic parameter values, and is directly related to Grinnellian niches 

(although, as we will see later, it should include effects of resources that are 

manifested at resolutions much fi ner than those of the climatic data usually 

considered in niche modeling applications). On the other hand, Eltonian niches, 

which depend on interactions with other species, require full consideration of 

the regulation term φi,g(e
→
g, R

→

i,g; x→g), which determines equilibrium values (or 

limit cycles, or even strange attractors) and also the effects of resources and 

dynamically linked species. Eltonian niches may also require consideration of 

initial conditions, when stable equilibria have nonglobal basins of attraction, 

or for unstable equilibria, as may happen in the case of two-species Lotka-

Volterra competition (Begon et al. 2006).

Now, consider the situation when species can move around within G. This 

possibility introduces a third term ψ into equation 3.1:

 1 dxi,g —– —— � ri,g(e
→
g) – φi,g(e

→
g, R

→

i,g; x→g) � ψ(Ti; x
→

i ) (3.2)
 xi,g dt

Ti denotes a transition matrix (Vandermeer 1972) expressing the instantaneous 

probabilities of all intercell movements for species i. The vector x→i represents 

the entire metapopulation of species i, or the population density of species i 
in every cell in G at a given time. If Ti is not irreducible (Bailey 1964), then 

it may include submatrices that represent mutually inaccessible regions. Any 

large geographic extent is likely to have inaccessible subsets, given the disper-

sal potential of a particular species, which might correspond to isolated areas 

such as islands, or areas on opposite sides of barriers like mountain ranges or 

large rivers. Although, strictly speaking, the movement term ψ(Ti; x
→

i ) should 

include also the corresponding matrices and metapopulation structure of the 

competitors and predators of i, this addition only complicates an already seri-

ously complex model and does not add any substantial insights to the discus-

sion that follows, so we will dispense with such terms.

As has been discussed already by many authors (Grinnell 1917, Good 1931, 

Hutchinson 1957, MacArthur 1972, Holt and Keitt 2000, Pulliam 2000, Pear-

son and Dawson 2003, Araújo and Guisan 2006), interactions between the 

three sets of factors (density-independent growth rate, biotic interactions, and 

dispersal capacity and movements) determine the area of distribution of a spe-

cies (Soberón and Peterson 2005). In fact, we are ignoring evolutionary factors 
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and perturbations, which would complicate the problem even more (Kirkpat-

rick and Barton 1997). Equation 3.2 therefore represents an attempt to reduce 

the problem of defi ning distributional areas to the fundamentals of population 

dynamics. As discussed later, considerations of intrinsic and instantaneous 

growth rates, and of regions in which population growth rates are positive, 

allow rigorous defi nition of subsets of G, which represent areas of particular 

interest. Conversely, the environments present in these geographic subspaces 

allow us to defi ne already-described niches, as well as new types of niches, in 

a rigorous way.

THE BAM DIAGRAM: A THINKING FRAMEWORK

The generally defi ned model in equation 3.2 allows not only for local equilibria 

of species, but also for limit-cycles and strange attractors; however, for the 

purposes of this book, we do not need a full solution, and it is possible to use a 

static representation of equation 3.2 to discuss extreme situations and defi ne 

niches. Initial discussions and verbal models were provided by Soberón and 

Peterson (2005) and Pulliam (2000), who published Venn diagrams describing 

the simultaneous infl uence of environmental conditions, biotic interactions, 

and dispersal in shaping species’ geographic distributions. The spatial structure 

also allows for traveling waves and other complex forms of behavior (Solé and 

Bascompte 2006). This wealth of spatiotemporal behavior is very interesting 

from the point of view of population dynamics, but is not necessary to defi ne 

Grinnellian niches.

We use a simple diagram (fi gure 3.1 and table 3.1) to display the joint fulfi ll-

ment of the three sets of conditions that appear in dynamic form in equation 3.2. 

Set A represents regions in geographic space where scenopoetic conditions (and 

existing resources) allow intrinsic growth rates to be positive, i.e., ri,g � 0. 

Another set B represents the geographic regions where the interacting factors 

(mainly biotic interactions with other species) are favorable for the presence of 

the species. Finally, a third set, M (relating to movements of individuals of the 

species) corresponds to the geographic regions that have been accessible to the 

species within a given time span [e.g., dispersal over recent generations or since 

the Last Glacial Maximum (LGM)]. G
O
 � A ∩ B ∩ M is then defi ned as the 

“occupied distributional area.” It is the subset of the accessible region in which 

both scenopoetic and biotic conditions permit the species to maintain popula-

tions, and is synonymous with the “realized range” of Gaston (2003).

GI � A ∩ B ∩ MC, on the other hand, is the “invadable distributional area” 

that the species could occupy if present distributional constraints were to be 
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overcome. (MC is the complement of M, or all of the areas which to the species 

is currently incapable of sending migrants.) The union of occupied and invad-

able areas GP � GO ∪ GI can be defi ned as the “potential distributional area” 
(Gaston 2003) of the species.

The types of populations occurring across space can also be displayed using 

the BAM diagram framework. Source populations, by defi nition, can occur only 

Figure 3.1. A simplifi ed heuristic device termed the “BAM diagram,” which de-

picts the interaction between biotic (B), abiotic (A), and movement (M) factors. 

Four areas are depicted: G the geographic space within which analyses are devel-

oped, GA � the abiotically suitable area, GO � the occupied distributional area, 

and GI � the invadable distributional area. Circles indicate occurrence data: solid 

circles indicate presences, and open circles indicate absences. Note that the only 

data relevant in calibrating niche models are those within M.

G 

B 
A = GA

M 

G1 

G0

Table  3.1. Summary of distributional areas (in geographic space, G)

and corresponding Grinnellian niches (in environmental space, E),

as defi ned in this book using scenopoetic (noninteractive) variables.

 Distributional areas Grinnellian niches

Symbol Name Symbol Name

GA Abiotically suitable area EA Existing fundamental niche

GP Potential distributional area EP Biotically reduced niche

GI Invadable distributional area EI Invadable niche

GO Occupied distributional area EO Occupied niche

See fi gure 3.1 for a visual representation of relationships among these distributional areas. Note 

that EA, the existing fundamental niche present in a given G, will likely represent only a subset of 

the full scenopoetic Grinnellian fundamental niche, NF.
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within GO, whereas sink populations may occur anywhere outside GO but within 

M. Observations of “presence” of a species can originate anywhere within M, 

while “absences” can come from anywhere within G, either because the spe-

cies is genuinely absent, or resulting from one of many factors that could cause 

nondetection (see chapter 5).

More complicated situations can also create diffi cult-to-interpret “pres-

ences.” For instance, Holt (2009) described a case in which scenopoetic condi-

tions are physiologically favorable, but Allee effects create a threshold of inva-

sibility, leading to “establishment” and “persistence” niches: a population may 

be found within an area with favorable scenopoetic conditions (i.e., inside the 

establishment niche), but at a density below its Allee threshold (i.e., outside its 

persistence niche); this effect is mostly Eltonian in nature. In chapters 5 and 7, 

we will discuss effects of different types of presences and absences, and their 

effects on the process of modeling ecological niches.

ECOLOGICAL NICHES AND GEOGRAPHIC DISTRIBUTIONS

MacArthur (1972) and Tilman (1982), assuming a simple substitutable resources 

model, have both shown that, in a linear, resource-consumer model, intrinsic 

growth rates are simple functions of an environmentally determined death rate 

di and the availability of resources at their equilibrium level (in absence of 

consumers), which we denote by Rl
*, as follows:

 ri,g � –di(e
→
g) � ∑

n

l�1

wi,lRl
*ai,l . . .  (3.3)

The term ai,l represents the per-unit time probability of fi nding the resource l, 
assuming that it exists at its equilibrium level Rl

*, and therefore that ai,lRl
*

 

represents the amount of resource encountered per unit time; the wi,l factors 

are conversion parameters to transform resource-encounter rates to units of 

population growth rate. Equation 3.3, therefore, can be used to defi ne region A 

precisely, as

 GA � {g| – di(e
→
g) � ∑

n

l�1

wi,lRl
*ai,l � 0}. (3.4)

In words, GA (or A for short) is the region (equivalent to Hutchinson’s biotope) 

where, in the absence of competitors and other negatively interacting species, 

and Allee effects (and implicitly given unlimited dispersal abilities), species i 
will be able to establish populations (Holt et al. 1997, Pulliam 2000). GA rep-

resents the set of all cells in which the scenopoetic environment is favorable for 

species i and resources are available to sustain at least a small population, and 

we term it the “abiotically suitable area.” The environment associated with GA 
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is η(GA) � EA, obtainable by standard GIS operations. We suggest that EA cor-

responds very closely to the “potential niche” of Jackson and Overpeck (2000). 

The term “potential niche” may be somewhat unfortunate, however, since it 

represents the currently existing manifestation of the fundamental niche (see 

chapter 2) that is in reality available at the moment, rather than the species’ 

potential. Moreover, other subregions of E-space may much more appropri-

ately be termed “potential,” as we will see later. For this reason, we decided to 

rebaptize Jackson and Overpeck’s (2000) “potential niche” as the “existing 

fundamental niche,” to stress the fact that it represents the existing subset of E 

that is within the tolerance limits of a species (its fundamental niche). This 

niche is the intersection of the fundamental niche, which as we said before, 

may be obtainable only by mechanistic methods (Kearney and Porter 2004), 

with the available set of environmental conditions. In symbols, if NF represents 

a fundamental niche estimated independently, EA � E ∩ NF (Soberón and 

Nakamura 2009). Conceptually, the fundamental niche NF is a physiological 

characteristic of a species, defi ned independently of the existing environment, 

and the existing fundamental niche EA, may be estimated using nonphysiologi-

cal techniques, and perhaps even correlative modeling (see the following).

The concept of fundamental niche of Hutchinson (1957), defi ned in terms 

of favorable conditions and lack of competition, and ignored complications 

owing to nonexistence of conditions favorable for the species across the spe-

cifi c landscape of interest (Jackson and Overpeck 2000). Moreover, recall that 

in his famous Concluding Remarks, Hutchinson (1957) did not distinguish be-

tween bionomic and scenopoetic variables. This distinction is critical in our 

defi nition of Grinnellian scenopoetic niches. Recent authors have published 

concepts akin to Hutchinson’s fundamental niche that are based on scenopoetic 

variables, such as the fundamental niche of Jackson and Overpeck (2000), the 

Grinnellian niche of Pulliam (2000) and James et al. (1984), and the environ-

mental niche of Austin et al. (1990). Since in theory it is feasible to defi ne El-

tonian fundamental niches (Chase and Leibold 2003), to avoid confusion, we 

henceforth refer to the Grinnellian fundamental niche NF as the “scenopoetic 

fundamental niche.”

Spatial Resolution of Scenopoetic Variables

In the literature of niche and distribution modeling, scenopoetic environmen-

tal variables have been used at coarse resolutions, mostly for reasons of data 

availability. It is possible, however, to model using some higher-resolution 

variables. In a recent example, Heikkinen et al. (2007) modeled distributions of 

several species of owls as a function not only of the customary habitat and 

climatic variables, but also of the presence of an important biotic component: 
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woodpeckers that excavate tree holes that the owls use as nesting sites. Both of 

the latter suites of variables may be regarded as scenopoetic, in the sense that 

the owl populations do not affect either climate or numbers of woodpecker 

holes, but their resolutions are different. The fi ner-resolution variable repre-

sented by availability of nesting sites is unaffected by owl populations (assum-

ing that the two do not compete for holes and that owls do not eat woodpeckers 

commonly), and in this sense constitutes a fi ne-resolution scenopoetic vari-

able. Most of the examples we will present in this book, however, focus on 

relatively coarse-resolution scenopoetic variables—that is to say, their semi-

variograms or autocorrelograms show broad spatial lags, in typical situations 

with vertebrates on the order of 102 to 103 km (fi gure 3.2). This resolution is a 

natural one at which to represent the coarse-grained features of the distribu-

tional area of a species, but it also means that a single coarse-grained cell in the 

Figure 3.2. Semivariogram of annual precipitation (mm) climate data from Hij-

mans et al. (2005), based on 300 random points distributed across the central 

Great Plains of the United States. The range (i.e., the distance over which points 

are not likely to be independent owing to spatial autocorrelation) calculated from 

this analysis was 118.5 km.
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grid may contain thousands of the Eltonian cells used in equation 2.3. Implica-

tions of this assertion are discussed later.

Estimation of the Fundamental and Existing Fundamental Niches

How can one estimate scenopoetic niches? Different avenues are available 

to estimate different niches (Holt 2009). In the fi rst place, NF can be studied 

mechanistically by means of process-based physiological models (Sykes et al. 

1996, Porter et al. 2002, Sutherst 2003, Kearney and Porter 2004, Buckley 

2008). This approach requires resorting to fi rst principles of energy transfer 

and function to describe the ecological physiology of a species, and has been 

applied to a variety of species of animals. For example, Kearney and Porter 

(2004) studied Heteronotia binoei, an Australian gecko, and produced a model 

of its thermal limits, water tolerance, and time needed for egg development. 

These values reveal, at least partially (Godsoe 2010), the species’ scenopoetic 

fundamental niche, NF . The results were integrated with a microclimatic model 

that delineated above-ground temperature profi les and relative humidity across 

Australia. The interaction of these two models leads to predictions about the 

spatial extent of the existing fundamental niche EA, or GA � η–1(E ∩ NF, which 

the authors expressed in terms of the probability of observing the species. The 

maps generated had a spatial resolution of 0.05o, or about 5 km on a side.

A related technique involves laboratory experiments or greenhouse studies 

to determine the ranges of conditions under which a species can live. It has 

been used, for example, to estimate two variables (temperature and moisture) 

in the fundamental niche of fl our weevils (Calandra spp.; Birch 1953) and pH 

and Ca� concentration constraints for the daphnia Daphnia magna (Hooper at 

al. 2008). These techniques are potentially quite powerful, as they allow esti-

mation of NF directly, at least for some variables (Godsoe 2010). It also has the 

major theoretical advantage of being based on direct information about the 

biology of a species, which can be obtained independently of the correlative 

methods that are the main focus of this book.

The main drawback of these mechanistic approaches to measuring NF is 

that they require laborious experiments, measurements, and/or calculations, 

and therefore are not readily applicable to large numbers of species. A related 

problem is that most climatic data are not in the form of variables related di-

rectly to limiting physiological mechanisms. For example, derived climatic 

information such as degree days needed for development in ectotherms, or 

growing days to budburst important to certain trees, must be obtained from 

available climate data (Sykes et al. 1996), which are normally available only at 

low spatial resolutions. Variables related to the physiology of organisms re-

short
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quire some sort of modeling, as exemplifi ed by Kearney and Porter (2004). 

However, in general at least, as the example cited and others show, direct, 

mechanistic estimation of NF is possible, thus providing a potentially powerful 

and independent means of estimating the A region in the BAM diagram, since 

by hypothesis GA � η–1(E ∩ NF) � A.

A second method would estimate EA via GA. In a thought experiment, imag-

ine that individuals of a species could be introduced at low to moderate densi-

ties in all cells in G, in experimental settings suitably replicated, and protected 

from competitors, predators, and diseases. After some appropriate length of 

time, the set of cells where the species shows a positive intrinsic growth rate 

{g|ri,g � 0} is an estimate of GA; then, standard GIS operations can be used to 

perform the operation EA � η(GA). To our knowledge, experimental estimation 

of GA using methods of this sort has never been attempted, even though esti-

mating GA empirically is what farmers have been doing since the Neolithic, 

and transplants of individuals to check their population responses are indeed 

feasible (Angert and Schemske 2005).

The third method relies on correlative methods, using the approaches here 

referred to as “ecological niche modeling,” to estimate EA from observations of 

the presence of a species in relation to environmental variation. The feasibility 

of estimating the existing fundamental niche using distributional data has been 

contentious, since it is likely that the occupied distribution of a species already 

includes reductions owing to biotic interactions and dispersal limitations. As 

we will see later, under particular confi gurations of the BAM diagram, such 

correlative estimates of environments associated with the occupied area of a 

species may coincide with EA; however, without assumptions and hypotheses 

about the confi guration of the BAM diagram, outputs of ecological niche mod-

eling exercises cannot be equated simply and directly to EA.

The Biotically Reduced Niche

In the preceding thought experiment, GA was estimated by introducing propa-

gules (protected from competitors, predators, and other negative interactors) 

over all of G, and observing which introductions were able to establish initial 

populations. Now, consider a second thought experiment: Imagine that com-

petitors and other negative interactors are allowed contact with the populations 

of the focal species that were introduced across G in the fi rst experiment. After 

some steady state has been reached, we remove every cell in which the nega-

tive interactors were capable of excluding the populations of the species of 

interest. This new area, by hypothesis, will be smaller than or equal to GA (but 

see the following; such is the case because positive interactions are neglected 

short
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in these treatments)—we can refer to this area as GP, or the “potential distri-

butional area.” Why potential? Because GP is the area that the species could 

occupy if it were able to disperse there.

This thought experiment has given us information about a potential distribu-

tional area GP, which is composed of two regions, GO and GI, so GP � GA ∩ B 

� GO ∪ GI (fi gure 3.1). We called GO � GA ∩ B ∩ M the “occupied distribu-

tional area” or occupied range: the area that is suitable from both abiotic and 

biotic perspectives and that has already been reached by individuals of the spe-

cies capable of founding populations. Only GO is actually amenable to being 

studied using observational data. Most maps of species’ distributions are geo-

graphically realistic attempts to depict GO (as opposed to abstractions, like the 

BAM diagram).

The “invadable distributional area” GI is suitable to a species from the sceno-

poetic and biotic perspectives, but has not been accessible to individuals of the 

species in question. The identifi cation of such invadable areas has seen consid-

erable study in the world of invasive species biology (NAS 2002), although not 

in a spatially explicit manner until the advent of ecological niche modeling 

(Peterson 2003a). GI can be estimated by transferring (i.e., applying across 

space) models of the environments in GO and assuming that effects of biotic 

interactions on GA are parallel in the two regions. More direct approaches 

would require something along the lines of the second thought experiment 

(wherein competitors and other negative interactors are allowed to interact with 

the populations of the focal species), which is almost impossible in practice. 

Chapter 13 treats the special challenges and problems involved in estimating GI.

Kearney (2006) suggested that GI could be estimated by means of competi-

tion experiments conducted in tandem with physiological measurements. This 

approach may prove feasible if the interactor species are few and have all been 

identifi ed—in this case, experiments can be performed, if biotic interactions do 

not induce complicated dynamics (see the following), and if they are suffi ciently 

known. However, much of the theory on competitive interactions stresses that 

spatial heterogeneity plays a strong determinant role in the outcome of inter-

actions (Tilman 1982, Chesson 2000, Amarasekare 2003, Hirzel and Le Lay 

2008). At the large extents characterizing most biogeographic work, perform-

ing experiments that would cover the entire set of conditions exhaustively will 

often prove unfeasible.

What are the subsets of E-space that correspond to GO and GI? We call the 

subset of environmental space defi ned by EP � η(GP) the “biotically reduced 

niche.” Conceptually, it is closely related to the realized niche of Hutchinson 

(1957), since it represents the part of the existing fundamental niche EA that 

remains habitable after reductions by competitors and other negative interac-

03peterson.023_048.indd   3603peterson.023_048.indd   36 6/8/11   8:41 PM6/8/11   8:41 PM



N I C H E S  A N D  G E O G R A P H I C  D I S T R I BU T I O N S  3 7

tors. Still, since this niche is defi ned using only scenopoetic variables, and be-

cause the distinction between occupied and potential distributional areas (i.e., 

the effects of M) remains unclear, we will avoid using the term “realized” 

niche to refer to EP. Similarly, the sets in environmental space corresponding 

to GO and GI are termed the “occupied niche” and the “invadable niche,” re-

spectively, and are denoted as EO and EI. Since GP � GO ∪ GI, it follows from 

rule 1 of the niche-space operations in appendix B that η(GP) � η(GO) ∪ η(GI), 

or EP � EO ∪ EI.

An important question is whether EO ≈ EI, which is often assumed to be the 

case (Guisan and Thuiller 2005), and may frequently be mostly true. The suc-

cess of numerous examples of predictions of the geographic potential of spe-

cies’ invasions strongly suggests that the assumption is correct (Peterson 2003a), 

but this question is explored further in chapter 13. Appendix A summarizes the 

notational and terminological orgy presented in this chapter.

Caveats about Reduction of Grinnellian Niches

and the Eltonian Noise Hypothesis

Although the preceding arguments appear to be straightforward, the biotic re-

duction of EA to EP is a complicated issue, as we now discuss. In fi gure 3.1, the 

region B represents the spatial subregion of G in which the aggregated biologi-

cal milieu (McGill et al. 2006) permits the species in question to maintain 

populations. It is the intersection of B and A that Hutchinson (1957), at his 

community-level scale, regarded as yielding the reduced “biotope” that corre-

sponds to the realized niche. Although this situation appears simple, two issues 

require clarifi cation (Soberón 2007), one related to the predictability of the 

outcome of interactions, and the other related to the scaling of observations.

Outcomes of interactions. Consider the simplest model, with no consider-

ations of limited migration and with only competitors and a “mean fi eld” 

(Rescigno and Richardson 1973, Molofsky et al. 1999) biotic parameter ci,g. (A 

“mean fi eld” competition model assumes that the competitive effects can be 

summarized as an average of competitive effects by all species pooled together, 

which is denoted by ci,g.) In this extreme case, only one species can survive per 

cell, as in the competitive exclusion principle attributed to Gause (1936), and 

B can be defi ned in terms of parameters of equation 3.2: B � {g|ri,g(e
→
g)/ci,g is a 

maximum}. Although information about the spatial distribution of ci,g is needed 

(which would be a daunting task), fi nding B under such a hypothetical situation 

is not, in principle at least, impossible.

However, under a more comprehensive, resource-consumer model (Tilman 

1982, Chase and Leibold 2003), defi ning B in terms of parameters requires 
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knowledge of the precise resource-exploitation model, the initial conditions, 

resource supply points, and their location in relation to the impact vectors. There-

fore, for a more realistic resource-consumer model, it usually would be imprac-

tical to measure parameters and defi ne B operationally, in terms of sets of cells 

that fulfi ll the conditions. Even worse, in certain realistic scenarios, results of 

complex competitive interactions cannot be predicted even with full knowledge 

of the parameters (Huisman and Weissing 2001), so defi nition of B in terms of 

the parameters of the equations may be fundamentally impossible. It is likely, 

then, that direct estimation of B from experimental data may be possible only 

in extreme situations in which competitive interactions are simple and appar-

ent, or phenomenologically, a posteriori from observations (e.g., Anderson et al. 

2002b). In any case, the problem of obtaining the experimental data regarding 

the presence of negative interactors across broad spatial extents remains a for-

midable practical problem (Araújo and Guisan 2006).

Scaling and biotic reduction of niches. The second problem with defi ning B 

in terms of Eltonian processes is one of spatial scale, in particular of spatial 

resolution. As we have seen, B often has a fi ne-grained structure, since it is de-

fi ned mainly by the outcomes of the dynamics of equation 3.2, and so requires 

knowledge of resource consumption and biotic interactions. We illustrate this 

point in fi gure 3.3, which is a BAM diagram modifi ed to show explicitly that 

A and B are manifested at different spatial resolutions (Pearson and Dawson 

2003).

Although competition for resources and indirect competition via shared 

predators are manifested at the scale of single grid cells, A is defi ned at the 

scale of clusters of cells sharing similar values of the (usually coarser-grained) 

scenopoetic variables. A wealth of ecological theory and experience suggests 

that, at broad spatial extents (i.e., large enough to include spatial heterogene-

ity), competitors can coexist for long periods of time (Tilman 1982, Chesson 

2000, Amarasekare 2003, Hirzel and Le Lay 2008). In this framework, by ag-

gregating many local cells to compose the coarser-grained cells that defi ne 

species’ geographic distributions, different outcomes of competitive interac-

tions are averaged, or at least muted, and the coarse-grained manifestations 

of fi ne-grained processes may not even be noticeable (Soberón 2010). For ex-

ample, assuming the most extreme scenario, in which many local populations 

are extirpated by competitors, the coarse-scale pattern is not affected unless the 

extirpation takes place in all of the local cells in B that together compose a 

coarse-grained cell in A (fi gure 3.3, right side).

Even if competitors are capable of excluding populations of a given species 

in the entirety of a coarse-resolution grid cell, the set EA would not be reduced 
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unless the cell in question presents a unique combination of niche conditions 

(Pearson and Dawson 2003). The possibility of competitive exclusion taking 

place (in local cells), but not reducing EA (as a consequence of the different 

scales at which the two niches are defi ned; and possibly owing to geographic 

heterogeneity in the distributions of the competitors) is in stark contrast with 

the case of the Eltonian niche and Hutchinson’s (1957) analysis. In the case of 

the latter niche, competitive exclusion at local levels always implies both altera-

tion of the fundamental niche and reduction of occupied local-level cells (Chase 

and Leibold 2003).

Examples of local competition leading to spatially broad extirpation of pop-

ulations have been documented, meaning that local effects can indeed affect 

geographic distributions (Bullock et al. 2000, Leathwick and Austin 2001). 

Such can be the case when broad-scale overlap between competing species is 

prevented by competitive interactions at the edges of species’ ranges. Hence, 

no need exists for extirpation to occur in all of the local cells: it simply needs 

to occur in the areas of intersection between the competing species’ ranges. 

Examples of such situations include the creation of “suture zones” in areas 

where populations of closely related and competing species come into contact, 

Figure 3.3. A BAM diagram redrawn to stress differences in spatial resolution of 

B versus A and M. The large box in each panel indicates G, the geographic space 

under consideration. A and M are shown as boxes, with coarse-grained cells in A 

to indicate the broad autocorrelation structure of most scenopoetic variables. B is 

shown as fi ner-resolution cells (small dark squares indicate biotically suitable 

sites) to emphasize the more restricted autocorrelation structure of bionomic vari-

ables. The right-hand panel shows a reduced B, perhaps owing to more intense 

competition, but that nonetheless does not affect the coarse-resolution distribution 

of the species in terms of cells of A.

G G0

242424

M

BA = G A B

M

A = G A

0
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e.g., after dispersing out of glacial refugia after cold periods (Hewitt 2000). 

Other examples of co-occurrence and co-exclusion patterns being driven by 

biotic interactions include mutualistic interactions at local scales that affect 

patterns at macroscales (e.g., Heikkinen et al. 2007, Hampe 2004).

However, given the preceding arguments, the details of Eltonian processes 

probably are not frequently dominant in determining the broad brush-stroke 

characteristics of species’ geographic distributions (Pearson and Dawson 2003, 

but see Anderson et al. 2002b). Another point of view is that, for many species, 

A and B may coincide broadly—that is, interactive effects may not infl uence 

the scenopoetic fundamental ecological niche at geographic extents and reso-

lutions. Of course, the idea that A ≈ B for a particular species is a matter for 

empirical verifi cation; the issue also will depend on the spatial extent of G and 

the spatial resolution of the grid that partitions it.

The fact that models based only on scenopoetic variables at relatively coarse 

resolutions are frequently capable of powerful predictions, and particularly in 

cases in which testing is transferred among regions or time periods (e.g., Iguchi 

et al. 2004, Araújo et al. 2005a), suggests that in many cases A ≈ B. We call this 

idea—which once again is an issue for empirical testing—the “Eltonian Noise 

Hypothesis,” because, if A ≈ B, Eltonian processes would act principally to 

generate noise in correlations between scenopoetic variables and patterns of 

occurrence of species. We return to this hypothesis at numerous points in the 

remainder of this book.

ESTIMATING GEOGRAPHIC AREAS AND ECOLOGICAL NICHES

In the fi nal topic of this chapter, we introduce conceptual aspects of the main 

theme of this book: how to estimate areas of distribution and their associated 

environmental subspaces (i.e., ecological niches). This discussion is an elabo-

ration of Hutchinson’s duality of niche and biotope (Hutchinson 1957, Colwell 

and Rangel 2009). Chronologically speaking, the fi rst problem that researchers 

attempted to address using niche modeling (ENM and SDM) was estimation 

of GO, the current area of distribution of a species (Busby 1991, Guisan and 

Zimmerman 2000, Peterson 2001). This initial challenge can be separated into 

two sorts of problems: “spatial interpolation” and “spatial transferability” (see 

chapter 10). As used here, spatial interpolation refers to extension of known 

distributions into areas that are not statistically independent of the areas used 

for model calibration (i.e., spatially autocorrelated), whereas spatial transfer-

ablity refers to inferences regarding areas that are statistically independent of 
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those used for model calibration (i.e., areas not spatially autocorrelated, usu-

ally different landscapes or different time periods with different climates).

Note that having obtained (by whatever means) an estimate of the occupied 

distributional area ĜO (the ˆ indicates an estimate), the simple GIS-based op-

eration η(ĜO) produces an estimate of the occupied niche ÊO. This idea is il-

lustrated in fi gure 3.4, which depicts the relationship between a species’ distri-

bution in geographic and environmental spaces. Here, the area of interpolation 

is represented by the gray region (crosses indicate known occurrences). Spatial 

interpolations can be performed based on nothing more than the spatial arrange-

ment of observed presences, because of the strongly autocorrelated structure of 

most spatial data (Bahn and McGill 2007). However, often, we are interested 

not only in areas around known occurrences, but also in predicting beyond 

known regions of occurrence, via “spatial transferability,” represented by area 

A and B in fi gure 3.4. Such problems call for algorithms capable of generaliz-

ing to regions beyond that used for calibrating the models, and require more 

than spatial interpolation because the only common link between the different 

areas is the environmental conditions that they manifest (see chapter 10).

When data documenting “true absences” (absences due to the species not 

being present, rather than to insuffi cient exploration, see chapter 5) are avail-

able, estimation of GO is best achieved by means of conventional statistical 

techniques that contrast explicitly populations of presence and absence points. 

Approaches such as generalized linear modeling (GLM), generalized additive 

modeling (GAM), regression trees, and others are well suited to this task (e.g., 

Guisan et al. 2002). Leaving aside the statistical method, another distinction 

lies with the integration of true absences in the calibration process, which in-

troduces effects other than those of the environmental variables in E, such as 

geographic barriers to dispersal. The suite of applications that use true absence 

data in addition to presence records is what should be termed species distribu-

tion modeling (SDM) sensu stricto, and will generally fall in the realm of SDM 

applications, which are fairly well explored and documented in the literature 

(Ferrier et al. 2002, Thuiller et al. 2004a, Guisan et al. 2006).

Most biodiversity datasets, however, lack true absences (see chapter 5 for 

detailed discussion of some of the terms that follow). Lacking true absence 

data, presence-only data (as well as presence/pseudoabsence data and presence/

background data) alone are not enough to estimate probabilities of presence 

of a species (and therefore GO), unless certain confi gurations of the BAM dia-

gram are known or assumed (Phillips and Dudík 2008, Phillips et al. 2008, 

Anderson and Raza 2010). Rather, models (binary or continuous) indicating 

relative suitability can be generated. In fact, as explained in chapter 7, niche 
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modeling, which aims to estimate EA or perhaps EP, may be best performed 

without true absence data, which essentially introduce in the modeling process 

the effects of interactive species, Allee effects, dispersal limitations, and other 

factors not directly related to Grinnellian niches. Since we concentrate primarily 

on presence-only situations (although we review presence/absence methods as 

well for completeness), the obvious question is what quantity is being estimated 

by ENM algorithms.

It is probably correct to state that niche modeling estimates niche-related 

objects along a continuum between the existing fundamental niche EA and the 

Figure 3.4. Geographic and environmental spaces for a hypothetical species. 

Observed presences G� are shown as �’s; the occupied distributional area GO and 

the occupied niche space EO are shown with gray shading; and the abiotically suit-

able area GA and scenopoetic existing fundamental niche EA are shown as open 

outlines. Notice that some parts of GO may be unknown (e.g., area A is occupied, 

but the species has not been detected there) and, similarly, that observed presences 

may not identify the full extent of EO (e.g., the shaded area immediately around 

label D does not include any known occurrence localities). Also, notice that some 

regions of GA may not be inhabited by the species: for example, area B may be 

beyond the dispersal range of the species, while the nonshaded area around label 

C may be uninhabited due to competition with another species. Hence, some parts 

of both GA and EA are unoccupied, yielding the invadable distributional area GI 

(e.g., area B) and invadable niche EI (the nonshaded area around label E, drawn to 

represent environments found in area B). Redrawn from Pearson (2007).
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occupied niche EO (Jiménez-Valverde et al. 2008), the position along this spec-

trum depends on the particular confi guration of the BAM (fi gure 3.5) in the uni-

verse chosen as the study region, the availability (and use or not) of true ab-

sence information, and the particular niche-modeling method used (Anderson 

and Raza 2010). The essence of the problem lies in the fact that, although esti-

mations of GO and GP present very different problems (Soberón and Peterson 

2005, Peterson 2006c), as can be seen from fi gure 3.1, their associated envi-

ronments may be quite similar. Indeed, a fundamental (but often only implicit) 

Figure 3.5. Examples of different confi gurations of the BAM diagram. Panel A 

shows an intuitive hypothetical confi guration, as in fi gure 3.1. Panel B shows a 

situation in which all of the abiotically suitable area GA is accessible, so the invad-

able distributional area GI is null and all parts of the potential distributional area 

GP are inhabited. Panel C shows a situation in which A and B are almost coinci-

dent, and the entire area is accessible to the species, so neither biotic nor movement 

considerations reduce the distributional potential of the species. Finally, panel D 

depicts a situation similar to C, except that substantial restriction of dispersal ex-

ists, such that not all suitable potential distributional areas are inhabited. In all 

panels, open circles denote absences of the species, solid circles denote presences 

of the species, light stippling indicates GI, and darker stippling indicates GO.
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assumption in many SDM applications is that EP � EO. Confusing estimation 

of GP with that of GO is easy, and has led to some model evaluation and com-

parison exercises that have not distinguished between the two challenges in the 

best manner possible (e.g., Elith et al. 2006). The bottom line is that, without 

information about true absences, the predictions that any ENM produces rep-

resent a hypothesis about environments similar to those where the species has 

been observed, and these environments are likely to be found between the ex-

tremes of EA 
and EO. Similarly, the associated biotopes or geographic ranges 

can be hypothesized to lie between GA and GO (Jiménez-Valverde et al. 2008).

In fi gure 3.5, we illustrate how different confi gurations of the BAM diagram 

correspond to different estimation problems. First, we denote the set of obser-

vations (presences and, if existing, true absences) as G
data

, and the set of pres-

ence-only data as G�. The operation of applying any algorithm to G
data

, given 

an environmental space E, to estimate subsets of G like GO, GI, or GP, is sym-

bolized with μ(G
data

,E). Note that we are not including information about the 

biotic environment B; we should not confuse this modeling step with η, which 

simply maps G space onto E space. This operation represents the set of steps 

required to obtain a prediction of an area from occurrence data and environ-

mental variables. Many methods produce an estimate of some subset of E that 

is then expressed geographically. Therefore, the operation μ(G
data

,E) identifi es 

subsets of G, although internally the fi rst step is generally to identify some 

subset of E. Many ways of implementing μ(G
data

,E) are available, at times 

based on completely different mechanisms, as we will discuss in chapter 7. In 

this section, we discuss not the details of methods, but rather the general frame-

work and interpretation.

The researcher always should ask fi rst what region in the BAM framework 

is being modeled, given occurrence data sampled from what area of the BAM 

diagram, and with what set of biological assumptions. Then, at least, we expect 

G� ⊆ μ(G
data

, E) ⊆ G; a point in G� that lies outside of the model prediction 

μ(G
data

, E) represents an error of omission, whereas areas predicted by the 

model that are outside of the true GP represent errors of commission (see chap-

ter 9 for a much more detailed treatment of these ideas). An algorithm that 

predicts only the known occurrence points G� as suitable has no commis-

sion error (meaning that no known absence points are incorrectly predicted; 

see chapters 5 and 9), but has the maximum possible omission error when con-

fronted with an independent evaluation dataset. On the other hand, an algo-

rithm that predicts all of G as suitable incurs all possible commission error, but 

no omissions. Obviously, both extremes are useless. We desire an algorithm 

that improves predictions at least to GO ⊆ μ(G
data

, E) ⊆ A.
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Niche-modeling algorithms, albeit using diverse methods, seek sets of cells 

that are environmentally similar to G�, trying to balance omissions of the avail-

able data (usually only presences) and measures of commission, often based on 

different types of pseudoabsences or samples from the full background (Hirzel 

and Le Lay 2008, Phillips et al. 2008; see chapter 7). The question is how to 

achieve the correct balance between errors of commission and errors of omis-

sion (Anderson et al. 2003). The fundamental problem of most niche modeling 

efforts is the fact that one is modeling without any reliable information about 

absences. As a consequence, estimating commission error is diffi cult (Ander-

son et al. 2003), as will be seen later, specifi cally in chapter 9.

To clarify the question of what area of the BAM diagram is being modeled, 

we examine some extreme cases (see fi gure 3.5). In the simplest case, assume 

that the species in question is an excellent disperser, and has been capable of 

colonizing all suitable regions of G; as a consequence, in such a case, M in-

cludes the entirety of the intersection of A and B (see panels B and C of fi gure 

3.5). This broad dispersal potential implies that occupied and potential areas 

coincide, or GP � GO, and similarly for the associated environments EP � EO. 

Assume further that the Eltonian Noise Hypothesis is true, in which case A ≈ B, 

as is illustrated in panel C. In this situation, if the presence data have been 

drawn uniformly from across environmental space, one would expect a reason-

able algorithm to give an estimate of sets that coincide: μ(G�, E) � GA ≈ GO. 

In this situation, the environments EA and EP (corresponding to the existing 

fundamental niche and the biotically reduced niche, respectively) coincide and 

many algorithms will estimate them approximately. The two types of prob-

lems defi ned earlier (spatial interpolation and spatial transferability) coincide 

in this extreme scenario, and exploration of E-space by the species is not con-

strained by movement, nor by unsuitable biotic conditions, so a well-executed 

sampling scheme will provide a good representation of E-space, and the esti-

mate μ(G�, E) � GA should be close to reality.

Now, assume the slightly more complex case in which an invadable region 

exists that is distinct from GO (see fi gure 3.5, panel D). Since μ(G�, E) seeks 

only similarities with the environments in G�, most algorithms fi rst estimate an 

environmental subset that may often be manifested in areas outside GO. Such 

models will be able to predict beyond a simple spatial envelope of GO 
to pro-

vide a spatial transferability prediction. This situation is one in which M con-

strains sampling of geography by the species, but perhaps not the species’ sam-

pling of E-space. Whether this scenario is realistic or not is little explored. In 

any case, the niche ÊO that the algorithm estimates is an approximation of EO, 

and we may suppose that the best possible μ(G�, E), given the data available, 
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will lie between the known occupied distributional area and the abiotically 

suitable areas: GO ⊆ μ(G�, E) ⊆ A, but where exactly will depend on how well 

the data points in G� sample EP, the particular confi guration of the BAM dia-

gram, and other factors to be discussed in later chapters. Uniform sampling 

across E will shift the position of μ(G�, E) toward GA. Uneven (biased) sam-

pling of E will shift μ(G�, E) toward sections of GO, or perhaps will provide 

even-poorer estimates of other areas in the BAM diagram. Since, by hypothesis 

in this confi guration (see fi gure 3.5, panel D), a signifi cant nonaccessible but 

suitable area exists, the model has the potential to estimate the invadable area 

GI if we are able to assume the equivalence of the environmental spaces cor-

responding to GP and GO.

Finally, in the confi guration shown in panel A of fi gure 3.5, environmental 

representation of G-space is most seriously constrained, by both limited disper-

sal and unfavorable biotic circumstances. If the environments η(GO) are a repre-

sentative sample of EA, and the data also sample those environments well, we 

expect μ(G�, E) to be shifted to the right in the expression G� ⊆ GO ⊆ μ(G�, E) 

⊆ A, providing a good estimation of the potential areas, which is an objective 

often desired. However, if the environments in G� are a biased sample of η(GO), 

we expect η(G�, E) to be shifted to the left, underestimating even GO.

In sum, estimation of regions in the BAM diagram is achieved by using al-

gorithms that search for similarities between the environments associated with 

sets of observed presences (and perhaps absences) G
data

 and the environments 

associated with the rest of the geographic area of the study at hand. Even as-

suming exhaustive and uniform sampling across the region by researchers, de-

pending on the confi guration of the BAM regions, presences may occur in all 

habitable regions, or only in some. Constraints of limited dispersal, or of lack 

of appropriate biotic contexts, may restrict what parts of the environmental 

universe are available to be occupied by a species. Therefore, any algorithm 

μ(G�, E) that looks for similarities will estimate a region biased toward either 

GO or GA, depending on the specifi c confi guration of the BAM regions, on how 

uniformly sampled E is, and on the logical structure and parameterization of 

the algorithm itself. Utilization of some version of the BAM diagram as a 

methodological framework is indispensable for the proper interpretation of the 

results of niche modeling.

SUMMARY

In this chapter, we provide an operational context for the theoretical relation-

ships between ecological niches and geographic distributions (Hutchinson’s 
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Duality). Ranges are defi ned as sets of cells in a grid subdividing the geo-

graphic space of interest (G). The requirements, biotic relationships, and move-

ments of a species defi ne several types of distributions. Grinnellian niches 

are defi ned by the sets of environmental vectors, out of a total space denoted 

by E, occurring in those sets of cells. Hence, we defi ne two spaces that we call 

G-space, standing for geography, and another called E-space, standing for the 

environmental conditions represented in G. We note the very different topolo-

gies of G and E, and show how ranges in G can be defi ned via properties of 

spatially explicit population equations. These equations suggest a simple heu-

ristic device, called the “BAM diagram,” which provides useful ways of clas-

sifying areas and their environments, and thus the results of modeling exer-

cises. We thus discuss fundamental niches in the context of scenopoetic spaces, 

and the need to defi ne the existing fundamental niche, and the “biotically re-

duced niche,” analogous to the realized niche. Finally, we explore the implica-

tions of different confi gurations of the BAM framework for estimating niches 

and distributions from incomplete information as in correlative niche modeling.
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C H A P T E R  F O U R

Niches and Distributions

in Practice: Overview

Part I of this book set out a conceptual framework for understanding relation-

ships between niches (in environmental space, or E-space) and spatial distribu-

tions (in geographic space, or G-space). This theory forms the base for the next 

sections, which deal with the practice of modeling ecological niches and esti-

mating geographic distributions (part II) and applications of these methods 

(part III). Although we cover a wide variety of modeling methods and applica-

tions in this set of chapters, the same basic approach is used throughout. This 

process can be outlined as follows (Hirzel et al. 2002):

1. The study area is conceptualized as a raster map with extent G, composed 

of grid cells at a specifi c resolution (grain).

2. The dependent variable is the distribution of the species (GO, GP, or GA), 

as inferred from occurrence records G�, sometimes with true absences 

also being known (presences and absences together referred to as Gdata
).

3. A suite of environmental variables is collated to characterize each cell of 

the study area in environmental terms; known as E.

4. A function μ(G
data

, E) that characterizes the dependent variable in terms of 

the environmental variables is generated, to indicate the degree to which 

each cell in G is suitable for the species. 

In this section of the book (part II), we describe the process of building 

ecological niche models, mainly in very practical terms, but based on the 

 conceptual foundation presented in part I. The process includes selecting and 

obtaining appropriate biological occurrence records and environmental data, 

choosing and applying modeling algorithms, and assessing the accuracy of the 

predictions quantitatively. In this chapter, we fi rst set out general principles 

and defi nitions necessary for understanding the coming chapters, and then 

describe—in less formal terms—principal steps to be followed in building niche 

models.
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GENERAL PRINCIPLES

Quite generally, the setup for a prediction problem is as follows. Nature issues a 

response Y. Two sets of explanatory variables, denoted generically by X and Z, 

exist that represent conditions that cause effects on Y. The distinction between 

two types of explanatory variables is that X is observable and easily estimated 

and visualized (e.g., temperature), while Z is not (e.g., most biotic interac-

tions). Nature’s response is denoted as Y � f (X, Z), for some function f. In this 

book, Y refers to the presence or absence (Y � 1 or Y � 0, or Y � 1, 0 for 

simplicity) of a species at a given site or in a given environment, giving rise to 

what is termed a classifi cation problem. X ⊂ E, while Z refers to other, com-

plex variables that are less easily observed and characterized. As noted already, 

and as is developed more fully in chapter 5, the very notion of what “presence” 

and “absence” truly mean is critical, and has many interpretations. That is, in 

the function f, the variables in X can change, and Y may change accordingly. 

In defi ning terms, we assume here that this function is given with clear mean-

ing, albeit unknown.

The notion of approximating nature through use of a model is to concede 

that the most that we can do is to attempt to discover Y � f (X). Note that the 

dependence on the additional factor Z is disregarded completely: we implicitly 

hope that any effects caused by Z are minor (see chapter 3). This set of assump-

tions necessarily introduces a notion of possible randomness, incompleteness, 

or even outright error, such as variability in Y even for equal values of X, since 

the unobserved Z variables may still cause variation in responses. Models f̂ (X) 

of the true relation f(X) can be obtained by means of algorithms for the pur-

pose of approximating nature’s true f. The term “model ” is frequently used as 

a synonym with the words algorithm, prediction, or method, represented in 

the last chapter by the expression μ(G
data

,E). Therefore, f(X) is estimated by 

use of a given algorithm  μ(G
data

,E). The different algorithms summarized in 

chapter 7 have the common goal of producing functions f̂ (X) that can be used 

to compute a prediction of Y for a given X. Some methods produce a 0,1 output 

directly, such that their predictions are of the form Ŷ � f̂ (X). Other methods 

produce a continuous output ĉ(X), with the property that larger values indicate 

greater likelihood of presence (or, more precisely, large values represent areas 

more similar to pixels at which the species has been recorded; the degree to 

which this similarity refl ects likelihood of presence depends of the represen-

titiveness of the input data). From such ĉ(X) predictions, f̂ (X) is defi ned as 

f̂ (X) � 1 if ĉ(X) ≥ u and f̂ (X) � 0 if ĉ(X) � u, where u is some constant called 

a “threshold of occurrence” (see chapter 7).
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Model Calibration and Evaluation

Model calibration  (sometimes called “training “) aims to estimate f (X) based 

on the set of empirical occurrence data G
data

. Also available are values of the 

ν variables X
1
, X

2
, . . . , Xn, which are the environmental values corresponding 

to each of the n cells in G
data

; in symbols, {(Yi, Xi)} � {(Yg, e
→
g) |g ∈ G

data
)}. In 

most applications, these values are environmental values associated with cells 

where a presence has been recorded G�, but sometimes true absences exist, 

and can also be incorporated; also, many applications incorporate environmen-

tal information associated with pseudoabsences or background pixels as part of 

the calibration process (see chapter 7).

Model calibration refers to steps internal to the process that allows an algo-

rithm to form (and in many cases refi ne) its estimate of f, which in turn may be 

used to make geographic predictions of distributional areas. Often, an algorithm 

uses data (both occurrence records and environmental data) in an iterative pro-

cess (e.g., rule development, internal testing, and rule refi nement or selection 

of weights for variables) to form a model of the species’ niche.

Model calibration is a necessary fi rst step, but most of our interest focuses 

on applying the resulting model for prediction purposes over a different set 

of  X’s—say, the values of Y for an independent set of m occurrence data 

X
1
*,  X

2
*, . . . , X*

m. This step is where “model evaluation”  becomes important 

(chapter 9). Model evaluation is about examining how successful f̂  is in repre-

senting observations used for evaluation based on the model derived from the 

original set of observations used in calibration. A model is deemed useful if the 

predicted values Ŷi
* � f̂ (Xi

*) (where the asterisk indicates that the Xi
* are ad-

ditional data) are in some way close to nature, which would be denoted f (Xi
*). 

A useful notion is that when evaluating whether Ŷ is “close” to Y, we are im-

plicitly or explicitly assuming what is termed a loss function , or evaluation 

criterion, L(Y, Ŷ). A basic example is “zero-one” loss, described by

 0 if Y � Ŷ
 L(Y, Ŷ) � � .  
 1 if Y � Ŷ (4.1)

No loss is incurred in cases in which prediction and observation agree; other-

wise, a loss of 1 is tallied. It should be noted that endorsing “number of correct 

predictions” as a criterion for what is meant by “close” implicitly favors zero-

one loss over other alternative loss functions (see chapter 9). Importantly, we 

note that zero-one loss is symmetrical, in the sense that omission error  and 

commission error  are deemed to bear equal consequences and are assigned 

equal weights; these concepts are fundamental to model evaluation and are dis-

cussed in further detail in chapter 9.

short
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5 4  C H A P T E R  4

Essentially, all statistical theory on optimality regarding unbiased point es-

timation is based on the premise that the zero-one loss function is a useful mea-

sure of model performance, yet it is not always recognized explicitly that this 

particular loss function is being employed. Another example of a symmetrical 

loss function common in statistics is squared error, given by L(Y, Ŷ) � (Y – Ŷ)2. 

The key issue here is that any notion of optimality and evaluation is relative to 

the loss function employed, implicitly or explicitly. No “optimal model” exists; 

rather, a model can be optimal only relative to a given loss function. Determi-

nation of which loss function to adopt is not a mathematical question, but 

rather a question for the user, to be based on the characteristics of the applica-

tion and the data at hand.

Once the notion of whether the predicted values Ŷi
* � f̂ (Xi

*) are close to 

f (Xi
*) is summarized in a loss function, model evaluation is about quantifying 

L[ f (Xi
*), f̂ (Xi

*)]; this mathematical simplifi cation is nonetheless a considerable 

challenge. On one hand, values of f (Xi
*) are imprecise or unknown, even if we 

have data samples that approximate them (see classifi cation of absences in 

chapter 5). On the other hand, these values contain inherently random factors, 

as explained earlier. A notion of “expected loss ,” or average loss over typical 

values of Xi
*, emerges as an obligatory term quantifying model imprecision, 

denoted by E{L[ f (Xi
*), f̂ (Xi

*)]}. To illustrate that this notion of expected loss 

has been encountered before, albeit perhaps inadvertently, consider zero-one 

loss, where the expected loss is simply the probability that prediction and ob-

servation disagree.

Computing expected loss analytically is not generally possible, so the practi-

cal solution is to try to estimate expected loss. Suppose that the model f̂  has been 

fi tted by using observations (Y
1
, X

1
), . . . , (Yn, Xn), and suppose that a second 

dataset (Y
1
*, X

1
*), . . . , (Y*

m, X*
m) is also available, where the X

1
*, X

2
*, . . . , X*

m are 

representative of the range of values where applying the model is of interest. In 

this case, one could compute

 1
 E

val
 � — ∑

i�

m

1

L[Yi
*, f̂ (Xi

*)], (4.2)
 m

and use this equation to approximate expected loss (or average validation error, 

prediction error, or testing error). This estimate E
val

 is indeed very simple, but 

it follows from assumptions made regarding the origin of the data. It can be 

interpreted as “typical” loss incurred in the prediction process.

A closely related set of distinctions is among verifi cation , validation , and 

our use of the more general term “evaluation .” Whereas “verifi cation” refers to 

assessment of a model’s ability to fi t to the calibration data (i.e., nonindepen-

dent data) and “validation” corresponds to the ability of the model to predict 
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N I C H E S  A N D  D I S T R I BU T I O N S  I N  P R AC T I C E  5 5

independent data (ideally independent spatially, taking into account spatial au-

tocorrelation patterns in the landscape; Araújo and Guisan 2006), the more 

general term “evaluation” refers collectively to the entire diversity of testing 

situations: evaluation data that are nonindependent, semi-independent, and fully 

independent of the calibration data. Typically, two datasets exist or are derived 

from a single one: the fi rst dataset is referred to as the “calibration dataset”   

(or “training dataset” in some literature) and the second one as the “evaluation 

dataset” (or “testing dataset” or “validation dataset”). This distinction between 

two pools of occurrence data is paramount, but is ignored with surprising fre-

quency. Ideally, the evaluation dataset should consist of observations not in-

cluded in the calibration dataset. Although such a separation has not always 

been employed (see chapter 9 and review in Araújo et al. 2005a), we emphasize 

the critical need for independence of the calibration and evaluation datasets, to 

allow rigorous assessment of model predictions. When two distinct datasets are 

not available or possible, it is common to produce two sets artifi cially by means 

of random partitioning of a single dataset, which has implications for interpret-

ing the results of the evaluation. This and other schemes such as jackknifi ng, 

“cross-validation,” and bootstrapping, which generally do not achieve full in-

dependence of the evaluation dataset, will be detailed in chapter 9. In these 

cases, estimating E
val

 is not as simple as was described earlier in this chapter.

In the preceding, we could compute an average over calibration data using 

the fi rst set,

 1
 E

ver
 � — ∑

i�1

n

 L[Yi
*, f̂ (Xi

*)], (4.3)
 n

This measure estimates lack of verifi cation (verifi cation error, calibration error, 

training error), in contrast to the measure of lack of validation estimated earlier 

using the independent dataset, the set {Yi
* , Xi

*}.

It is also important to note that many of the same principles and metrics 

used for model validation (e.g., log-loss functions and data partitioning) are 

also used by various model algorithms in model calibration (see chapter 7). In 

the notation developed here, model calibration amounts to minimization of 

error E
ver

 by modifying or adapting f̂ , while keeping the calibration dataset 

fi xed (although subsets of it can be split within the calibration process).

A problem distinct from assessing error (i.e., estimating E
val

) is the question 

of examining a prediction for statistical signifi cance. In this case, the investiga-

tor quantifi es the rates of correct and incorrect predictions given by a model, 

and compares this rate to those expected under some null hypothesis, which is 

generally the idea that the predictions are no better than random with respect to 

the validation data (see chapter 9).
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5 6  C H A P T E R  4

As a fi nal point of introduction, we note that the set of observations {(Yi, Xi)} 

used for calibrating and evaluating niche models must be sampled from condi-

tions characteristic of the space over which predictions are to be made. Because 

of the two crucial spaces involved here (G and E), this point may be interpreted 

in two ways: that {(Yi, Xi)} are typical in geographic space or that they are 

typical in environmental space. We should thus consider the space in which 

evaluation occurs, since the data may be biased geographically yet unbiased 

environmentally or possibly vice versa (see chapter 7).

STEPS TO BUILDING NICHE MODELS

More practically, and complementary to the list given at the outset of this chap-

ter, we outline concrete steps that constitute the modeling process (fi gure 4.1). 

This set of steps structures the chapters presented in part II of this book.

Step 1. Data Preparation

The fi rst task in building a niche model is to collate, process, error-check, 

and format the data that are necessary as input. Two types of data are required: 

(1) occurrence data documenting known presences (and sometimes absences) 

of the species (see chapter 5), and (2) raster-format GIS datasets summarizing 

scenopoetic environmental variables that may (or may not) be involved in de-

lineating the ecological requirements of the species (see chapter 6). With just 

these two inputs, initial niche models can be developed.

Occurrence records are point localities (defi ned by x and y coordinates, such 

as latitude and longitude) that specify what is known about the species’ geo-

graphic distribution. In most cases, occurrence data comprise records of where 

the species has been observed to be present (i.e., “presence-only” data ). How-

ever, in some cases, “records” of places where sampling has occurred but the 

species has not been documented are also available; when both types of occur-

rence information are available, the data are termed “presence/absence data .” 

Some modeling methods are able to function based on presence-only data, 

whereas others can take good advantage of the additional information available 

in presence/absence data. Still, the advantages and disadvantages of each ap-

proach must be considered carefully (see chapter 7). Issues concerning different 

types of occurrence data, including potential data sources and biases, are dis-

cussed in detail in chapter 5.

The environmental datasets  characterize variation in scenopoetic variables 

across the study area. Variables derived from weather-station data (e.g., daily 

temperature and precipitation), on-ground surveys (e.g., soil characteristics), 
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5 8  C H A P T E R  4

or remote sensing imagery (e.g., spectral refl ectance and cloud cover) are pro-

cessed into raster GIS layers. Ideally, model inputs are provided that are thought 

to have a direct physiological role in delimiting the ecological niche of the 

species. For example, Pearson et al. (2002) collated a suite of seven climatic 

variables and fi ve soil variables, from which they generated fi ve model-input 

variables, including maximum annual temperature, minimum temperature over 

a 20-year period, and soil-moisture availability. The general aim is to develop 

variables that summarize qualities of the environment that are likely to be rele-

vant to the species’ distributional biology, such as availability of water, energy, 

space, and/or time.

The biological and environmental datasets used in niche modeling are ide-

ally viewed, formatted, and prepared in a geographic information system. GIS 

facilitates many key operations, including changing geographic projections (all 

data must be referenced to a common coordinate system, so that occurrence 

records can be matched to corresponding values of environmental variables), 

changing spatial resolution, and transforming vector-format occurrence data to 

raster formats. GIS also provides crucial functionalities for visualizing model 

results, as well as additional processing of model outputs, such as removing 

predicted areas that are geographically isolated from known occurrence records 

by dispersal barriers (see chapter 8). The steps of choosing, obtaining, and 

formatting environmental data lead to important considerations of data quality, 

spatial extent, resolution, and richness of environmental dimensions that are 

discussed in detail in chapter 6.

Step 2. Niche modeling

Having collated occurrence records and environmental variables, the next step 

is to use a modeling algorithm to characterize the species’ ecological niche as 

a function of the environmental variables. Put simply, the model aims to iden-

tify environmental conditions associated with the species’ occurrence (and 

perhaps its absence as well), which is what we have called the estimation, f̂ . 

In practice, the function f̂  assigns values to points in E-space. Depending on 

the algorithm employed, the values represent various probabilities, suitabilities, 

like lihoods, or “degree of membership” to certain sets (see chapter 7). These 

values may or may not be apparent, depending on the software used. Although 

sometimes the software presents only a geographic expression (i.e., a map) 

of the environmental valuation, GIS methods can extract the actual values as-

signed to the points in E-space, so model “response surfaces” can be estimated 

for any algorithm. The task of classifying environments would be relatively 

straightforward if just one or a few environmental variables were used; in prac-

tice, however, we usually seek models that can integrate many predictor vari-
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ables, since species likely respond to combinations of multiple environmental 

factors. The task is therefore to build a model of the species’ ecological niche 

in a multidimensional E-space. In chapter 7, we review modeling algorithms 

that have been applied to this task, and classify models according to their func-

tioning and data requirements.

At this stage of the modeling process, one task is calibrating the model to 

ensure that the algorithm provides optimal results. Depending on the particular 

method used, various decisions are necessary. For example, if applying the 

Maxent algorithm (Phillips et al. 2006), it is necessary to choose a suitable 

regularization parameter; in using the Genetic Algorithm for Rule-set Predic-

tion (GARP; Stockwell and Peters 1999), a convergence criterion must be set; 

and generalized additive models (Hastie and Tibshirani 1990, Guisan et al. 2002) 

require the degrees of freedom to be selected. More generally, the relative im-

portance of alternative environmental predictor variables may be explored at 

this stage, to select variables for inclusion in the fi nal model. Another consider-

ation is how best to select an appropriate threshold of occurrence for converting 

continuous model output (e.g., probability of occurrence) to a binary prediction 

of “present” versus “absent.” These topics are covered in detail in chapter 7.

Here, it is particularly important to understand conceptually how the model 

is assembled in E-space and then projected back into G-space. Several factors, 

including the degree of equilibrium between environmental conditions and 

species’ occurrences (Araújo and Pearson 2005) and the adequacy of sampling 

of the species’ distribution, will affect the degree to which the model is able to 

predict elements of the Hutchinsonian Duality of niche (i.e., EA, EO, EI, or EP) 

and biotope (i.e., GA, GO, GI, or GP). Chapter 7 provides a discussion of the 

potential for models to predict different elements of the niche and distribution, 

and shows that the choice of a “best” modeling approach depends on the aims 

of the modeling exercise.

Step 3. Model Projection and Evaluation

The next tasks are to map the prediction in G-space (or possibly E-space) and 

to evaluate how well the model predicts independent data. To map the predic-

tion, algorithms display in G-space one of several possible values: as we will 

see in chapter 7, these output values may be “suitability” of an environment for 

the species; probability of occurrence of the species P(Y � 1|X � g); probabil-

ity of fi nding cells similar to those already visited P(X � g |Y � 1); or envelope 

quantities describing membership in a set. As we said earlier, depending on the 

biological realities or assumptions of the particular case (i.e., the confi guration 

of the BAM diagram for that species � landscape � resolution combination; 

see fi gure 3.5), the resulting map summarizes environmental suitability across 
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6 0  C H A P T E R  4

the landscape (i.e., an estimate of GA), which may or may not correspond closely 

to the occupied distributional area of the species (GO). Additional refi nements 

to and analyses of model outputs at this stage can be used to improve predic-

tions of the occupied distributional area (i.e., modifying or processing ĜA to 

estimate GO more closely); for example, areas predicted as suitable, but iso-

lated from observed occurrence records by dispersal barriers (such as a river or 

mountain range) may be removed (Peterson et al. 2002b), and the infl uences of 

fi ner-scale habitat features (James et al. 1984, Thuiller et al. 2004a, Heikkinen 

et al. 2007) or interacting species (Anderson et al. 2002a, Araújo and Luoto 

2007) on species’ distributions may be incorporated to improve model results. 

Methods for estimating geographic distributions from ecological niches are 

treated in chapter 8.

Finally, before model predictions can be interpreted or used for any of vari-

ous applications, we must evaluate the predictive performance and signifi cance 

of the model. Ideally, data used for evaluation of models would be collected 

independently of the calibration data, specifi cally for the purpose of evaluating 

the model; however, it is common to use a data-splitting approach to generate 

subsets for calibrating the model and subsets for evaluating it (see the preced-

ing discussion and chapter 9). Several alternative statistical tests have been 

applied to evaluating niche models, including tests based on either presence-

only or presence/absence evaluation data and tests based on binary predictions 

(i.e., presence versus absence) or continuous suitability (or probability, in some 

cases) surfaces (Fielding and Bell 1997). We will discuss these statistical tests, 

along with important conceptual diffi culties associated with evaluating model 

performance and signifi cance, in chapter 9.

Step 4. Model Transferability

In some niche modeling applications, it is necessary to transfer modeled niche 

conditions to predict environmental suitability across a new region or for a dif-

ferent time period. For example, predicting the potential for spread of alien 

invasive species requires that a model calibrated using occurrence records for 

one range area be applied to a different region to identify suitable areas (see 

chapter 13). Likewise, predictions of potential distributional shifts under cli-

mate change require that the model be used to predict under scenarios of future 

or past climatic conditions (see chapter 12). Many potential applications exist 

for these predictions, including addressing questions in ecology, evolutionary 

biology, and conservation planning, which we describe in chapters 10 to 15.

Predicting into new regions and under alternative climate scenarios raises 

important diffi culties, such as the problem of “extrapolating” beyond the range 

of environmental conditions over which the model was calibrated (see chap-
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ter 7). An important distinction should be made here. “Extrapolating,” or rather 

transferring, models in G-space means identifying regions of the world with 

environments similar to those modeled for a certain species in the calibration 

region. This question may be perfectly valid and interesting (see the discussion 

of spatial interpolation versus spatial transferability earlier). In contrast, ex-

trapolating in E-space means predicting beyond the ranges of environmental 

variables used for the calibration. This procedure is risky, and can be justifi ed 

only under certain assumptions, such as linearity or monotonicity of responses 

(see chapter 7).

We discuss many problems and caveats as they are encountered in part III, 

but an important fi nal step—where possible—is to evaluate predictive perfor-

mance using occurrence records from the new region or different time period, 

providing a further validation that is certainly more independent and rigorous. 

For example, occurrence records from a new distributional area for an invasive 

species may be used to test a prediction for the region based on the native range 

(Peterson 2003a, Thuiller et al. 2005b). Similarly, distributions recorded across 

different time periods may be used to test predictions of range shifts over time 

(Araújo et al. 2005a, Martínez-Meyer and Peterson 2006). These tests utilize 

approaches and statistics that are discussed in detail in chapter 9.
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Species’ Occurrence Data

Although most of biological diversity is poorly known (Wilson 1988, Erwin 

1991), one commonality among species is that something is generally known 

about where they occur on Earth. That is, an integral part of every scientifi c 

description of a species is information about the geographic provenance of the 

available type specimen material (e.g., for animals, Article 76, ICZN 1999). 

Therefore, all known species should have at least one geographic occurrence 

locality available. In many cases, of course, the situation is better than just the 

type locality, with data from specimens or observations documenting many ad-

ditional occurrences also available.

This book focuses on the process of transforming such primary occurrence 

data into a synthetic understanding of the geographic and ecological conditions 

under which a species occurs. As noted previously, an alternative set of meth-

ods for characterizing ecological niches takes a mechanistic approach to the 

challenge (Porter et al. 2002, Natori and Porter 2007). However, our focus is on 

correlative models based on occurrence data, since such models can take ad-

vantage of the near-universal availability of some form of occurrence data, are 

easily implemented for large numbers of species, and hence can have quite 

broad applicability.

TYPES OF OCCURRENCE DATA

Although the concept of occurrence data seems quite straightforward—dots on 

maps showing places where the species has been found—the details can be much 

more complicated. Starting with the very basics, occurrence data  for use in 

ecological niche modeling would ideally be drawn from the accessible areas that 

are environmentally suitable for the species to maintain long-term stable, source 

populations (Pulliam 2000, Araújo and Guisan 2006)—that is,  GO in the discus-

sions in chapter 3. Absence data  would ideally also be carefully considered—

in this case, these points would come from areas that have been accessible to 

the species (M), and where the environment is unsuitable for the species to 
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maintain populations, or the area outside of GP (or in some cases the area out-

side GA), although in practice they will frequently be drawn from the area out-

side of GO. With occurrence data and absence information of this nature (i.e., 

presences from GO and absences from outside of GA), niche modeling would be 

relatively straightforward. All, however, is not as simple as it might seem, or as 

one might wish, as the numerous considerations of biases and problems in this 

and succeeding chapters will illustrate.

What Makes an Occurrence Record?

In reality, a long chain of events connects the suitability of a site to the exis-

tence of a data record documenting the species’ presence or absence at that 

site. Among these factors are the following:

1. The area may be unsuitable, and for that reason the species is not present.

2. The area may be unsuitable, but the species is present (at least occasion-

ally) owing to dispersal from suitable areas.

3. The area may be suitable, but the species has never been able to disperse 

to it.

4. The suitable area was at one point occupied by the species, but the species 

has since been extirpated from the area. (Note that this idea can include 

temporal variation in presence of a species at a site, which may, in some 

cases, be important.)

5. The suitable area may be occupied by the species, but no researcher has 

ever visited the place to sample.

6. The suitable area may be occupied and may have been visited and sampled 

by researchers, but they did not detect the species.

7. The suitable area may be occupied and may have been visited and sam-

pled, and the species may also have been detected, but the record is not 

among those available to the researcher.

8. The suitable area may be occupied and may have been visited and sam-

pled, the species detected, and a record is available to the researcher.

This set of factors can be considered quite usefully in the form of a prob-

ability tree diagram , in which nodes are arranged sequentially to represent fac-

tors, and branches denote the possible ways each factor can result (fi gure 5.1). 

These factors can be divided into at least two groups: biological factors (i.e., 

mobility, abiotic suitability, and biotic suitability, as discussed in the context of 

the BAM diagram in chapter 3) and factors related to exploration, detection, and 

data (e.g., the species must have been identifi ed correctly). For a presence record 

to occur at a given site, all of the biological factors and all of the exploration- 
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and detection-related factors must be fulfi lled simultaneously. This schema is 

represented sequentially in fi gure 5.1, assuming simple, yes-no alternatives for 

each biological factor, which we will explore more quantitatively.

The tree  is a graphical representation of a random multistep schema explain-

ing presences and absences of species at nodes (denoted Y � 1, 0), and their 

detection by an observer (denoted D � 1, 0). Five tiers (at least) of random 

outcomes must be considered. The fi rst through third tiers are based on the 

ideas of the BAM diagram . Three binary random variables I, J, K are used to 

represent access to a site by the species, abiotic suitability, and biotic suitability, 

respectively. The event {Y � 1} is equivalent to {I � 1} ∩ {J � 1} ∩ {K � 1}. 

In other words, Y � 1 signals the existence of a source population in a given 

Figure 5.1. Probabilistic events leading to presence and absence observations, 

including erroneous results. Each bar represents a choice, with open circles repre-

senting “yes,” and gray circles representing “no.” A presence observation requires 

not only that the species is present (Y � 1) in a cell, which is the result of the three 

biological processes represented in the fi rst three columns, but also that the cell 

was visited by observers [with probability b(g)], and that the observation was 

performed properly (e.g., no identifi cation errors, no typographical errors) with 

probability D. Several opportunities exist for mistakes to be committed. We high-

light an example of false absence resulting from faulty observation, two absences 

due to radically different biological causes, and a false presence resulting from 

faulty observation or recording.
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cell. Sink populations are found in regions where I � 1, but either J � 0 or 

K � 0. We use the following succinct notation for conditional probabilities that 

label specifi c segments in the probability tree:

 PM(g) � P(I � 1|X � g),

 PA(g) � P(J � 1| I � 1, X � g), and

 PB(g) � P(K � 1|J � 1, I � 1, X � g). (5.1)

Here, the sums of PM(g), PA(g), PB(g) over all g do not necessarily add to one (that 

is, they are not necessarily density functions over g). For example, PM(g) � 1 

for all g is possible, denoting the situation when the region is fully accessible 

to the species. The number PA(g), as developed in chapter 3, depends on the 

Grinnellian environmental variables η(g); one could really write PA[η(g)], but 

we maintain PA(g) as shorthand. The probability PB(g) is an Eltonian set of fac-

tors, and PM(g) depends on rates of mobility, time spans, and the geographic 

confi guration of G.

As we saw before, PA(g) can be obtained mechanistically, although this esti-

mate may require substantial effort (Kearney and Porter 2004, Crozier and 

Dwyer 2006, Buckley 2008). PB(g) is unknown for virtually all species (Araújo 

and Guisan 2006, Soberón 2007). Given the huge disparities in scale between 

the variables defi ning PB(g) and PA(g), it may be possible to regard PB(g) as 

constant, meaning that the Eltonian environment is roughly similar over the 

entire region, or perhaps just a random variable that is uncorrelated spatially, 

which is the Eltonian Noise Hypothesis  (see chapter 3). PM(g) may be com-

pletely known, may be postulated on biogeographic or ecological grounds, or 

may be constant, meaning that all sites g are equally accessible to the species.

In the fourth tier, we ask whether a given cell has been accessed by an ob-

server or not. The event {X � g} represents the fact that cell g has been visited, 

and its probability is denoted by P(X � g) � b(g). Variation in b(g), biological 

sampling, accounts for sampling bias. The last tier of nodes focuses on detec-

tion of the species once the collector has examined a site and the species is in 

reality present at the site. We use the notation D(g) � P(D � 1|Y � 1, X � g) 

for the conditional probability that the species is detected. Note that D � 0 can 

occur even if Y � 1 (a false negative detection), with conditional probability 

1 – D(g). D � 1 can occur even if Y � 0 (a false positive detection). Each last-

tier segment of the tree beginning at Y � 0 may actually have a specifi c prob-

ability value for a false detection. For example, a false positive may be more 

probable if biotic conditions are suitable than if they are unsuitable. This gen-

eral case for detection is quite complex, so some simplifi cations will be made. 

The most benign of the detection confi gurations is the “perfect detection” setup, 

where D(g) � 1 and all seven conditional probabilities in the tree P(D � 1|Y � 0, 
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6 6  C H A P T E R  5

X � g) are set to zero. In general, D(g) depends on the methods and experience 

of the collector, as well as on g.

The notion of “statistical independence” means that conditional probabilities 

obey a special structure spread out over all segments in the tree. For example, 

if abiotic suitability is independent of access (a generally reasonable assump-

tion, since abiotic suitability can be seen as a physical property of a site that can 

be defi ned regardless of access by a species; marine situations, in which cur-

rents may determine both access and suitability, may present exceptions), then

 PA(g) � P(J � 1| I � 1, X � g) � P(J � 1| I � 0, X � g) (5.2)

[that is, the value PA(g) would also apply to the single segment connecting 

nodes I � 0 and J � 1]. If biotic suitability is independent of abiotic suitability 

and accessibility, then

 PB(g) � P(K � 1|J � 1, I � 1, X � g) �

 P(K � 1|J � 0, I � 1, X � g) �

 P(K � 1|J� 0, I � 0, X � g). (5.3)

The multiplication rule in probability theory states that the probability at 

any single branch as a whole is obtained by successive multiplication of the 

conditional probabilities of component segments. For example, the probability 

of the uppermost branch in our tree (labeled Y � 1, D � 1) is given by

 P(X � g, I � 1, J � 1, K � 1, D � 1) �

 P(X � g)P(I � 1|X � g)P(J � 1| I � 1, X � g) � 

 P(K � 1|J � 1, I � 1, X � g)P(D � 1|K � 1, J � 1, I � 1, X � g) �
 b(g)PM(g)PA(g)PB(g)D(g).  (5.4)

This last compact notation, because of the interpretation stated earlier, is really 

a product of conditional probabilities, and it does not imply that we are always 

assuming independence of collector visitability, species access, abiotic suit-

ability, biotic suitability, and detection. Independence is only a special case, 

represented by structure over other branches in the tree, as explained earlier.

The probability tree keeps track of the possible ways in which a single unit 

of sampling effort can result in an observed presence or absence record. If a 

collector sets out on an arbitrary, single data-collection effort, the probability 

that he or she records an observed presence (O � 1) is given by

 P(O � 1) � ∑
g

P(X � g)P(Y � 1|X � g)P(D � 1|Y � 1, X � g) �

 ∑
x

b(g)P(Y � 1|X � g)D(g).  (5.5)

short
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In the special “perfect detection” case, {O � 1} is equivalent to {Y � 1}. But in 

general, because a biological presence is not equivalent to an observation, it is 

important to distinguish these two concepts.

In our tree, biological presence of the species at site g is explained by favor-

able biotic and abiotic conditions, and the species’ dispersal abilities. By the 

rule of successive multiplication in probability trees, the conditional probability 

of a presence at site g is given by

 P(Y � 1|X � g) � PB(g)PA(g)PM(g). (5.6)

Equation (5.6) relates what may be called a statistical representation of prob-

ability of presence to a more ecological representation, based on causal factors. 

This equation excludes collector activity, and summarizes how uncertainty re-

garding a biological presence is a combined effect of three separate factors that 

in turn depend on the environment of site g.

The simple diagram in fi gure 5.1 also serves as a bookkeeping device for 

several types of errors present in species’ occurrence data. The second box from 

the top on the right side of fi gure 5.1 represents a case in which the species is 

present and the site was visited, but no detection occurred (a false absence in 

G
data

, or akin to omission error for a prediction ; chapter 9). Similarly, false 

positives (≈ commission errors ) can occur (the last box in fi gure 5.1) when a 

site is in reality unsuitable for a species, but the site is visited and the species’ 

presence is recorded, either owing to errors in geographic referencing or errors 

in taxonomic identifi cations (see chapter 9 and latter portions of this chapter 

for more discussion of these errors).

Figure 5.1 shows that the probability distribution of presence records (ob-

served data) depends on the combined effect of all fi ve components. Although 

interest always lies in inferring the biological aspects of the tree, observed data 

are nonetheless produced as a function of the combined effects of all factors. It 

is important to understand that occurrence data inevitably contain information 

that may mask the true objects of interest, so results must be interpreted criti-

cally. Under some special circumstances, distributions of observed data truly 

depend only on the biological quantity of interest, such as a region that is very 

well sampled, so that b(g) � D(g) � 1 for all g in fi gure 5.1.

Overall, then, we can see that occurrence data are not simple documenta-

tions of species’ presences and absences, but rather the result of complex fi lter-

ing by very diverse processes. This complexity must be considered early in 

the design of each study, as a means of controlling the quality of the data input 

into the modeling algorithm and avoiding the classic “garbage in, garbage out” 

situation. Without such precautions, niche modeling studies run a clear risk of 

short
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6 8  C H A P T E R  5

modeling the “niche” of the data collector, the sampling, the accessibility, or 

any of several other nonbiological factors.

Types of Occurrence Data

On a more practical note, we can consider the sources of occurrence data avail-

able to a researcher. We defi ne primary occurrence data  (or frequently, for 

brevity, just “occurrence data”) as records that place a particular species in a 

particular place at a particular time. As such, primary occurrence data can take 

many forms. Labels associated with specimens in the research collection of a 

natural history museum or herbarium provide a rich resource of primary occur-

rence data, as they connect an identifi ed (or at least identifi able) specimen with 

information on its provenance in time and space. Another vast resource of pri-

mary occurrence data is that of observational information, including visual 

sightings, auditory detection, records of tracks, and other similar techniques 

for establishing a species’ presence without collecting and preserving the indi-

vidual. For some taxonomic groups for which visual or auditory identifi cation 

is feasible (e.g., birds, butterfl ies, large mammals), large observational datasets 

have been developed (e.g., BBS 2008, SSIC 2009), which can offer enormous 

quantities of occurrence information. Finally, diverse technologies are under 

exploration for automated and remotely sensed species identifi cation: for ex-

ample, automated identifi cation of vocalizations (Chesmore 2004, Chesmore 

and Ohya 2007), or identifi cation of tree species from remotely sensed infor-

mation (Castro-Esau et al. 2004, Clark et al. 2005, Papeş et al. 2010).

Not all occurrence data are equally useful. Note that primary occurrence 

data place the species in question at a point in space, down to the limits of the 

precision and accuracy of its georeferencing (coordinates of latitude and longi-

tude, or other system; see the following). As such, primary occurrence data are 

useful in theory in analyses conducted at any spatial resolution as coarse as or 

coarser than the spatial precision and accuracy of the record itself. Also, some 

primary occurrence data are documented by evidence that can be revisited and 

reidentifi ed if necessary—we term these records “voucher ed” primary occur-

rence data. Specimens in natural history museums and herbaria are the best 

examples here, although photographic and recorded auditory records may also 

be considered to be vouchered to some extent. Although nonvouchered observa-

tional data  can certainly be of value for ecological niche modeling, vouchering 

adds an additional level of quality control and future utility that is not possible 

when a data record cannot be revisited in view of new evidence or analyses.

We distinguish carefully between primary occurrence data and what we can 

term “secondary occurrence data,” which represent summaries or syntheses 

of primary occurrence data. Although “synthesis” sounds attractive, secondary 
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occurrence data often include subjective elements that can detract seriously 

from their utility. Common sources of secondary occurrence data  include range 

maps digitized from fi eld guides (e.g., Howell and Webb 1995), digital extent-

of-occurrence GIS datasets (e.g., Ridgely et al. 2005), and biodiversity atlases 

(e.g., Hall and Moreau 1970, McGowan and Corwin 2008). In each case, some 

level of subjective interpretation is involved in the production of the secondary 

product. Typically, the range summary of secondary occurrence data is overly 

simplifi ed (see example in fi gure 5.2).

Generally, secondary products suffer from a broad-stroke approach (large 

grain/coarse spatial resolution, sometimes as crude as 1:40,000,000), and for 

this reason, they may omit areas of known occurrence or include areas where 

the species does not occur (Hurlbert and Jetz 2007). Although they can be quite 

useful as range summaries, and are receiving increasing use in macroecologi-

cal analyses, whether advisable or not (Ceballos and Ehrlich 2006, Davies et 

al. 2006, Orme et al. 2006), secondary summaries are certainly not generally 

recommended for use in modeling species’ niches and potential distributions, 

and results will require careful interpretation.

Figure 5.2. Example of the lack of precision and detail in polygon-based, second-

ary sources of distributional information. Shown is the example of the Emerald 

Toucanet (Aulacorhynchus prasinus); polygons (shaded gray) are from Ridgely 

et al. (2005), with primary occurrence data for the Mexican portion of the distribu-

tion from the Atlas of Mexican Bird Distributions (Navarro-Sigüenza et al. 2006), 

each point corresponding to a vouchered occurrence record of the species.
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Species Characteristics

Clearly, even if sampling considerations (see the following) do not complicate 

the picture, species vary in the geographic and ecological characteristics of 

their distributions and occurrences. A useful framework for thinking about these 

points is the “seven types of rarity ” concept of Rabinowitz et al. (1986). This 

framework separates species into a 2 � 2 � 2 matrix structured by overall local 

population size, size of the occupied distributional area, and level of habitat 

specifi city. One of the cells in this matrix (large population, broad geographic 

range, low level of habitat specifi city) corresponds to common species, but the 

species in the other seven categories are “rare,” in at least one dimension. These 

three basic ways in which species can be rare can explain many of the ways in 

which their occurrence data vary as well.

In this sense, species’ distributional characteristics can be visualized by the 

spatial patterns in their occurrence data at different spatial scales (fi gure 5.3). 

Species may be broadly distributed or narrowly distributed geographically. For 

example, the most broadly distributed species approach cosmopolitan distribu-

tions (e.g., House Mouse Mus musculus, Osprey Pandion haliaetus, Barn Owl 

Tyto alba), whereas the narrowest distributions of species may constitute a 

single mountain peak or a single cave or spring. At a different scale, species—

whether broadly or narrowly distributed globally—may be broadly distributed 

in terms of habitats across a particular landscape. Furthermore, within appro-

priate regions and habitats, a species may be present in high or low numbers 

(Ricklefs 2004). Species in different portions of this conceptual matrix may offer 

very different challenges for developing ecological niche models.

Sampling Complications

Bias in geographic space. Sampling  of biodiversity is complex, with numer-

ous factors clouding any straightforward relationship between true distributions 

of species and the occurrence data that are derived from them and document 

them (see fi gure 5.1). A major motivating factor in developing methods for 

modeling ecological niches and predicting potential distributions is precisely 

the fact that primary occurrence data  often provide a distorted representation 

of true distributional patterns, even when large amounts of such data are avail-

able. As such, detailed consideration of the vagaries of biological sampling and 

their effects on primary occurrence data is worthwhile.

A fi rst consideration in this regard is that of detectability —quite simply, 

some species are more easily detected than others. In its simplest form, de-

tectability is associated with how apparent members of the species are, and as 

such can be seen as a random reduction in detection probability from unity to 
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Figure 5.3. Maps showing three sets of occurrence data for three butterfl y spe-

cies across Mexico. (A) Available presence data for Nathalis iole, an abundant and 

widespread butterfl y. (B) Available presence data for Paramidea limonea, a species 

that is quite geographically restricted but that is locally abundant within that area. 

Finally, in (C), available occurrence data are shown for Prestonia clarki, a geo-

graphically widespread species with only a small number of low-density popula-

tions across western Mexico (occurrences are highlighted within ellipses). Data 

from Llorente-Bousquets et al. (1997).

A

B

C
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something below unity in any site across the range (MacKenzie et al. 2002). 

This sort of detectability effect on biodiversity data acts simply to rarefy the 

content of biodiversity databases for each species, but should not introduce 

systematic biases for any given species. Detectability may, however, vary for 

a single species among regions and habitat types, which can indeed bias the 

information on a particular species toward or against certain regions (Buckland 

et al. 2005). In this latter case, the primary occurrence data available for a par-

ticular species may misrepresent its ecological tolerances, and thus bias any 

estimate of its ecological niche.

Another common source of misrepresentation of species’ distributions in 

primary occurrence data is that of bias  in the distribution of sampling effort. 

This effect is commonly manifested in the form of “road bias ”: the pattern of 

most sampling taking place near roadways (Kadmon et al. 2004), although 

rivers, areas of high human population density, and other access points may 

also serve to create such biases (Heyer et al. 1999, Lim et al. 2002). (We sus-

pect that roads cut across very different environments more frequently than 

will rivers, so road-biased sampling may not be as problematic as other sources 

of geographic bias; see the next section.) Sampling bias may be most common, 

extreme, and likely in short-term or single-investigator efforts, but major, per-

vasive biases exist even in major biodiversity compilations accumulated over 

centuries of effort (Reddy and Dávalos 2003).

Finally, uneven sampling may result simply by historical accident, particu-

larly when data were not collected for the purpose of a particular study, but 

rather were assembled post hoc from other sources containing data deriving 

from previous fi eld efforts. Because of the presence of a particular institution 

or investigator in a given area, or the location of a popular fi eld station, a con-

centration of records may accumulate, providing a skewed representation of 

the species’ distribution (see fi gure 5.4). This sort of effect can develop thanks 

to some countries mounting major survey efforts, the existence of state-level 

monographic treatments, mandates by particular agencies, intense sampling in 

regions surrounding universities or fi eld stations or other study sites, increased 

sampling in heavily populated areas (e.g., through “citizen science”), and around 

type localities as researchers often return there to sample topotypes.

Bias in environmental space. Sampling that is biased in geographic space 

may or may not be biased in environmental dimensions as well. For example, 

samples clustered along a road that cuts across a large mountain range are 

obviously biased spatially, but may sample environments very well—but other 

situations may not be as fortunate. Countering environmental bias in sampling 

is diffi cult when working in an ecological niche modeling framework, because 
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nonrandom associations between occurrence records and environmental vari-

ables are precisely how we characterize ecological niches. That is to say, the 

constraints that the ecological niche places on the presence and absence of a 

species across a landscape are in essence themselves a bias (in the sense of a 

deviation from random) in representation of the species across environmental 

dimensions. As such, to characterize sampling bias in ecological dimensions 

and potentially rectify its effects, additional information regarding the nature 

of the sampling per se becomes necessary (Zaniewski et al. 2002, Phillips et al. 

2009).

Unfortunately, if sampling bias in ecological dimensions does exist, it can 

have rather pervasive adverse effects on the results of niche modeling (see 

chapter 7). For example, perhaps in a particular case higher elevations in a 

landscape were not sampled as much because of increasing diffi culty of access, 

producing an inverse correlation of sampling probability with elevation, which 

in turn is inversely correlated with temperature and other features of climate. 

Figure 5.4. Example of the varied problems often found in occurrence data de-

rived from heterogeneous sources. Shown are known occurrences of the European 

butterfl y Lycaena dispar derived from queries to data resources mediated by the 

Global Biodiversity Information Facility. Discernible are biases in survey effort 

(e.g., compare Poland and Luxembourg with Germany), as well as secondary data 

likely derived from coarse-resolution atlases across much of the species’ range (see, 

e.g., points aligned in rows in northern Italy).
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A niche model calibrated using occurrence data resulting from such sampling 

will likely predict low suitability in those high-elevation regions, because no 

occurrence records from such regions were available (Nogués-Bravo et al. 

2008a). Clearly, any environmental correlates of sampling bias limit the pre-

dictive ability of the niche models based on that sampling, especially for tech-

niques that use background or pseudoabsence sampling (chapter 7).

Appropriate means of characterizing sampling bias and distinguishing sam-

pling bias from niche-based ecological limitation would include examination 

of either direct information regarding the sampling scheme or information that 

provides a surrogate of that sampling (Zaniewski et al. 2002, Phillips et al. 

2009). Direct information regarding sampling effort may be available in some 

cases for single, large planned survey efforts, such as the North American Breed-

ing Bird Survey (BBS 2008) or the Smithsonian Venezuelan Project that sur-

veyed mammals and their ectoparasites (Handley 1976). However, reconstruct-

ing sampling effort per se from biodiversity databases including the results of 

many surveys by different collectors would require careful consultation of fi eld 

notes in museum archives; even if such information exists, the process of com-

pilation will often prove unfeasible.

An alternative to direct compilation of sampling effort for the species of 

interest is to use primary occurrence data for a broader sample of species as a 

surrogate  (Phillips et al. 2009). To provide a valid surrogate (or index of sam-

pling effort), such data should correspond to species that are sampled in the 

same manner as the species of interest would be sampled. Such a “target group ” 

(sensu Anderson 2003) is not necessarily simply a taxonomic group. For ex-

ample, surveys for small nonvolant mammals in the northern Neotropics often 

capture marsupials, shrews, and rodents. Even though these three groups do 

not represent a monophyletic lineage, they would constitute an appropriate tar-

get group when estimating sampling effort for any individual species of those 

groups. Data for a well-chosen target group provide information regarding 

which environments have been sampled, and in particular, environments that 

are well-sampled but from which the species has not been documented (Heyer 

et al. 1999, Anderson 2003). Data regarding species in the target group must 

also correspond to the same data sources used for the species of interest, so that 

the actual sampling effort across the landscape is captured. Such data may be 

easy to obtain when online databases are involved, but will typically be diffi -

cult to assemble if direct consultation of specimens in museums and herbaria 

is necessary.

Given appropriate data regarding sampling effort or a surrogate of it, testing 

for sampling bias in ecological dimensions becomes feasible. Randomization 
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tests offer a powerful approach to solving these challenges. In this approach, 

the observed distribution of sampling points is compared with multiple, re-

peated, random samples of the same number of samples or sampling points from 

the entire study region to assess whether biases with respect to the environmen-

tal spectrum are present in the biological sampling. For example, Kadmon et al. 

(2004) characterized sampling of woody plants in Israel, showing that, while a 

strong road bias exists in geographic space, biases in E-space are relatively 

subtle. Biases in environmental dimensions were manifested principally in terms 

of precipitation, while sampling of temperature regimes was fairly represen-

tative. In a complementary approach, Funk and Richardson (2002) provided a 

visualization of environmental variation across Guyana, and demonstrated sev-

eral intriguing gaps in the coverage of environmental variation across the coun-

try by existing biodiversity sampling.

Characteristics of Absence Data

Careful consideration of absence data  is necessary in order for niche modeling 

based on this information to be rigorous and successful, and not confused by 

introduction of additional biases. The probability tree of types of occurrence 

data presented in fi gure 5.1 gives an example of the complex set of possibilities 

that can lead to real or apparent “absence” data. Absence data or something 

akin, however, are required by several modeling approaches that use both pres-

ence data and some sort of absence, pseudoabsence , or background data  for 

calibrating models (Hirzel et al. 2002, Elith et al. 2006; see chapter 7).

Three basic approaches are available for assembling and using occurrence 

data for modeling: (1) use presence-only data; (2) use presence and absence 

data, where available; and (3) use presence data and a sample of background or 

“pseudoabsence” data, in lieu of absence data (see chapter 7 for discussion of 

algorithms that follow each of these strategies). In the latter option, an arbitrary 

number of grid pixels is resampled by some means, typically at random, from 

the study area as a whole or from areas where the species has not been detected 

(Graham et al. 2004a). Although the terms “pseudoabsence” and “background” 

are sometimes used indiscriminately, background sampling from the study 

area as a whole can be used to characterize the environmental conditions pres-

ent across the study region (i.e., creating a sample from the “background” that 

potentially includes sites where the species’ presence has been observed). In 

contrast, pseudoabsence sampling entails selecting from areas or sites where the 

species has not been detected (or sometimes only from the subset of nondetec-

tion sites where sampling has occurred). Pseudoabsence sampling thus holds 

the intent of mimicking absence data; however, such data typically suffer from 

short

05peterson.062_081.indd   7505peterson.062_081.indd   75 6/8/11   8:43 PM6/8/11   8:43 PM



7 6  C H A P T E R  5

inclusion of pixels from areas that the species does or could occupy, contrary 

to the intent of this approach. In any case, neither approach can be considered 

to yield true absence data; accordingly, resulting analyses must be interpreted 

differently from those based on real absence data (if such data were to exist).

At this point, it is necessary to return to the considerations presented in 

chapter 3 regarding why species are present where they are present and why 

they are absent where they are absent. The limitations to a species’ movement 

referred to as M are of particular importance, as they constrain species to occur 

in only a subset of otherwise suitable sites. That is to say, areas exist that are 

suitable for a species to maintain populations, but that are not inhabited be-

cause of dispersal limitations; we term such regions GI. Species’ invasions offer 

a clear demonstration of the existence of the area GI (Peterson 2003a).

However, if background or pseudoabsence data are generated via resam-

pling from undocumented sectors of a broad landscape, some of the resulting 

sites will very likely derive from areas suitable for the species but outside of M 

(i.e., in GI), causing problems in the modeling process (see chapter 7). Even if 

“real” absence data are available—that is, if one has information on sites where 

the species was not present during intense sampling (MacKenzie et al. 2002)—

one is never sure that those sites are genuinely not habitable by the species, or 

rather may not hold the species simply because they lie outside of the species’ 

dispersal range, or the species was not present at the time of sampling owing 

to temporal differences in occupancy, or it was present in other unsampled parts 

of the cell (see fi gure 5.1; Soberón and Peterson 2005).

More specifi cally, we can refer to the BAM diagram  from chapter 3 to iden-

tify precisely what sort of data would be ideal for in niche-modeling exercises. 

As has been discussed already, presence data are ideally sampled from GO (i.e., 

source populations), whereas absence data would be selected from regions 

outside of GP (although differentiating GP
C from GO

C, where the superscript C 

indicates the complement, is a serious challenge), and within M. (We note that 

distinguishing source and sink populations is important, but quite challenging—

possibilities include hypothesizing sink populations as those occurring only in 

environments located close to source populations, but no clear methodology 

has as-yet been developed.) Careful consideration of these points is key in niche 

modeling exercises, as models can otherwise be seriously fl awed, correspond-

ing rather to aspects of species distribution modeling (i.e., estimating GO; see 

the sections treating probability of occurrence and study region in chapter 7). 

Given these concerns, a general conclusion is that it is best to avoid using ab-

sence data in developing niche models, and similar complications exist for 

background and pseudoabsence data (Anderson and Raza 2010).
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OCCURRENCE DATA CONTENT AND AVAILABILITY

Recent decades have seen dramatic increases and improvements in the avail-

ability of biodiversity data. What was fairly recently a challenge of harvesting 

data from analog formats (e.g., specimen labels, card fi les, data sheets) has now 

become convenient and effi cient, and great quantities of data can be accessed 

quite quickly. In the excitement of this “new age,” however, it is important to 

bear in mind constantly the need to consider the provenance, quality, and pos-

sible biases that the data may carry.

Ideal Information Content

Data content (i.e., which fi elds are included), database design, and data integra-

tion are rapidly expanding fi elds of inquiry (Soberón 1999, Stein and Wieczorek 

2004, Guralnick et al. 2006). As such, we do not attempt a comprehensive review 

herein, but rather touch briefl y on a few important points. Although primary 

occurrence data are in essence quite simple (i.e., documenting the occurrence 

of a species at a particular place at a particular time), more information regard-

ing the record is usually needed.

Data that lack documentary information can be perilously imprecise or 

misleading, not for what they say, but for what they imply. For example, older 

natural history specimens may have very general locality information, for ex-

ample “Brazil, Rio de Janeiro.” While this locality description sounds simple, 

a careful user would consider whether this locality descriptor refers to Rio de 

Janeiro the city, or Rio de Janeiro the state. Also, Rio de Janeiro in 2011 is 

considerably more extensive than it was in 1880. Finally, one must consider 

how far outside of the limits of the city of Rio de Janeiro the specimen could 

have been collected and still be labeled as “Rio de Janeiro” by the original 

collectors.

The solution to this quandary, and many other confusions regarding occur-

rence data, is to attach critical metadata  to the primary occurrence data record. 

Specifi cally, metadata should include information regarding the location of the 

voucher specimen  (if one exists), the means of identifi cation and person mak-

ing it, the species concept underlying the identifi cation provided, the source of 

the geographic reference (e.g., GPS reading, map, gazetteer, etc.), and the datum 

and spatial precision (maximum error) of the quantitative geographic reference 

(e.g., geographic coordinates; Wieczorek et al. 2004). Additional helpful meta-

data might inform the user as to how the records were accumulated (e.g., sam-

pling strategy, focal taxa for sampling, accumulation curves for sites sampled, 

etc.), which might be useful in designing strategies for assembling absence 
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information. Several data architectures and schemas have been developed to 

attempt to capture a broad and consistent picture of information associated with 

primary occurrence records (Graham et al. 2004a).

Certainly, in ecological niche modeling, geographic coordinates are key, as 

they are the link between known occurrences of species and environmental 

characteristics of occurrence sites. Hence, considerable effort has been invested 

in development of georeferencing  tools and information schemas that preserve 

maximal amounts of information from the original collecting event. For ex-

ample, the MaNIS georeferencing protocol (Wieczorek et al. 2004) provides a 

useful framework, in which the point to which the geographic reference cor-

responds is associated with a radius of possible error or uncertainty , based on 

several criteria. This protocol is now mostly automated, with metadata created 

in formats that can be attached seamlessly to the original record. In future, the 

error “radius” could be refi ned to refl ect the fact that uncertainty is not always 

uniform in its directionality, so that uncertainty in georeferencing would be 

represented as a probability density cloud around the point. The key benefi t to 

this overall approach is that once uncertainty has been assessed quantitatively, 

the researcher can fi lter available occurrence data so as to use only those occur-

rences that are georeferenced with suffi cient precision and accuracy for the 

modeling exercise at hand. As such, georeferencing and error assessment con-

stitute critical steps in the process of niche model development.

Availability of Occurrence Data

One of the most challenging bottlenecks in ecological niche modeling is that 

of obtaining useful occurrence data, but that situation is changing rapidly. Just 

a few years ago, occurrence data had to be accumulated via specifi c queries 

to information “owners,” via visiting stand-alone Internet-based databases to 

develop queries, or by visiting natural history museums or other repositories 

of vouchered primary occurrence data. Beginning in the late 1990s, however, 

efforts began in several regions to offer effi cient, integrated access via distrib-

uted biodiversity databases (i.e., biodiversity databases linked via a common 

access portal on the Internet; Soberón 1999). This concept has been successful, 

and early technologies have given way to DiGIR and TAPIR, both highly ef-

fective information-transfer protocols that have been developed specifi cally 

for the transmission of biodiversity information. Most prominently, the Global 

Biodiversity Information Facility (GBIF) offers a portal to �270 million pri-

mary species’ occurrence data records.

The availability of Internet-based digital primary occurrence records has 

augmented rapidly through time. From near-nil in the early 1990s, these data 

resources have increased by about eight orders of magnitude to the present 
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hundreds of millions. Indeed, Soberón and Peterson (2008) recently analyzed 

~85 million records from data served via the GBIF portal, and detected an in-

triguing trend based on year of original collection: a linear temporal increase 

of biodiversity information on a semilogarithmic scale. That is, the number of 

records available per year increased approximately 10-fold every 50 to 55 

years (fi gure 5.5), which bodes well for the continued growth of biodiversity 

information networks. Of course, an important question is whether this trend 

will continue into the future. It may in the short term through digitization and 

integration of existing large datasets, in the medium term through new large-

Figure 5.5. Summary of the growth in availability of Internet-based digital pri-

mary occurrence data records provided by the Global Biodiversity Information 

Facility data portal. Note that the number of records presented refers to records 

originally collected in that year, and as such the log-linear increase shown in this 

fi gure is impressive. Redrawn from Soberón and Peterson (2008).
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scale observational and collection efforts, and potentially in the long term via 

applications of new remotely sensed data and remote identifi cation of individ-

ual species.

Naturally, the usual problems of large datasets apply to these new resources. 

Many species are characterized by only a single record or very few records 

(fi gure 5.6); error rates are far from negligible; many records lack identifi ca-

tions and even more identifi cations are surely incorrect; and furthermore, the 

great bulk of records are yet to be georeferenced. All of these complications 

together imply signifi cant work before data are usable in niche modeling exer-

cises (Soberón et al. 2002, Chapman 2005). However, the investment involved 

in such efforts is near-trivial when compared with the prospect of repeating the 

biological sampling that led to the wealth of information currently held in natu-

ral history museums, especially because the temporal dimension of sampling 

cannot be recreated and because so many habitats have been altered drastically 

by humans.

Figure 5.6. Example of the uneven nature of biodiversity information across 

species. This graphic summarizes �400,000 records of Mexican birds (Navarro-

Sigüenza et al. 2006), showing frequencies of representation for each of �1300 

species occurring in the country. Notice that the intervals on the horizontal axis 

change to provide detail on the left end of the spectrum.
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SUMMARY

Data documenting occurrences of species across geography exist—in some 

form or another—for almost all known species. The series of events leading to 

the existence of those particular data, however, is less clear, and the diverse and 

complex factors associated with occurrence data need to be considered in order 

to produce a view of the challenges behind niche modeling. These factors can 

be summarized in the form of a probability tree, which illustrates how presence 

data should generally be reliable indicators of presence (not always, though), 

whereas absence data spring from many and varied phenomena. Occurrence 

data—mostly in the form of data documenting presences of species—can be 

discussed as primary (i.e., deriving directly from observations of species) ver-

sus secondary (i.e., processed or interpreted from primary data), and must be 

pondered in terms of possible biases in geographic and environmental spaces. 

Absence data, if to be used at all, must be considered carefully with respect to 

the probability tree and to the BAM diagram.
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Environmental Data

Ecological niche models are built from two sources of input data: (1) the known 

occurrences of the species of interest discussed in chapter 5, and (2) environ-

mental predictors in the form of raster-format GIS layers. Whereas the quality 

of and biases in occurrence data have seen considerable documentation and 

discussion (e.g., Soberón et al. 2000; see chapter 5), the nature, quality, and 

biases of environmental data sets have seldom been considered in detail in 

niche modeling analyses, despite the key role that they play in the process of 

calibrating models (Peterson and Nakazawa 2008). In this chapter, we discuss 

conceptual and applied aspects of environmental data, in the context of build-

ing and interpreting ecological niche models.

SPECIES-ENVIRONMENT RELATIONSHIPS

In Hutchinson’s conceptualization of the ecological niche, discussed in detail in 

chapters 2 and 3, persistence and abundance of populations of species are deter-

mined by suites of scenopoetic  and bionomic variables  within an n-dimensional 

hypervolume of environmental space (Hutchinson 1957). As this concept is 

critical for ecological niche modeling, we must consider carefully how its de-

tails, ambiguities, and diffi culties should guide us in implementation.

In the fi rst place, it is clear that the type and number of variables comprising 

the dimensions of the ecological niche varies from one species to another (Lei-

bold 1995, Pulliam 2000). For example, bats are highly sensitive to low tem-

peratures, while felids are more sensitive to vegetation structure (Kitchener 

1991, Patten 2004). Moreover, even within one of these broader groups, a par-

ticular species may respond to one set of variables, while another responds to 

other features of the environment. Finally, the relative importance of particular 

environmental variables for a species may vary according to the geographic 

and biotic contexts.

Environmental variables have been classifi ed in various ways, depending on 

their relationships with, and infl uences on, geographic distributions of species. 
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While Hutchinson distinguished scenopoetic from bionomic dimensions of 

environments (Hutchinson 1978), Austin (2002) proposed two different break-

downs, as follows:

1. Idealized variables —This categorization focuses on the degree to which 

variables have direct physiological effects on organisms, which Austin 

(2002) subdivided into:

• Indirect —Variables with no causal physiological effects on individuals, 

but that have a correlation with species’ occurrences because of 

correlations with other factors. Examples would include latitude 

and elevation.

• Direct —Variables that affect organisms physiologically, but that are not 

consumed by them. Equivalent to Hutchinson’s scenopoetic variables; 

examples would include temperature.

• Resource —Variables that are consumed by or affected by organisms. 

Equivalent to Hutchinson’s bionomic variables; examples would 

include food resources, presence of predators or parasites, or light 

in shade-limited plants.

2. Distal /proximal variables —Here, Austin (2002) sorted variables by the 

degree of causality of species’ responses to environmental factors (see 

fi gure 6.1). He divided variables into:

• Proximal—Organisms respond directly to such variables; an example 

might be freeze durations that affect survival of cacti in northern 

latitudes directly.

• Distal—Responses of organisms to these variables are not direct, but 

rather via multiple additional causal links; an example would be annual 

mean temperature, which manifests as a causal factor only via the 

freeze durations just mentioned earlier. 

It should be borne in mind that these categories are not mutually exclusive of 

one another—a variable may be proximal or distal and direct or resource at the 

same time.

Beyond this basic classifi cation, different environmental factors operate 

at different spatial and temporal scales. As a consequence, their relative im-

portance in defi ning a species’ distribution and abundance can be highly scale-

dependent (Mackey and Lindenmayer 2001, Pearson and Dawson 2003, So-

berón 2007). In the early twentieth century, Joseph Grinnell proposed that 

species’ distributions are hierarchically structured in space, the most inclusive 

classes consisting of climatic variables (particularly temperature and humid-

ity) as the main drivers at coarse resolutions, whereas availability of food and 
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refuges as most important factors at fi ner resolutions (Grinnell 1917). More 

recently, it has become generally accepted that different controlling factors 

typically operate at certain corresponding “scale domains” (Pearson and Daw-

son 2003): again, macroclimatic variables infl uence distributions at coarser 

scales, whereas landscape features (e.g., vegetation cover) act at mesoscales, 

and specifi c habitat features and biotic interactions have strongest infl uences 

at local scales (Mackey and Lindenmayer 2001, Pearson and Dawson 2003; 

fi gure 6.2).

Figure 6.1. Example summary of responses of a virtual species to eight environ-

mental characteristics. Adapted from Austin et al. (2006).
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ENVIRONMENTAL DATA FOR ECOLOGICAL NICHE MODELING

A key question is thus which and how many variables are needed for rigorous 

modeling of a species’ niche? The answers clearly depend on the scale at which 

the question is addressed, the knowledge available regarding the autecology of 

the species in question, the complexity of the ecological niche of the species, 

and the availability of high-quality data. To be able to understand ecological and 

geographic distributions at the fi nest scales, a combination of scenopoetic and 

bionomic variables would be necessary, covering features of microclimate, 

habitat structure, resource supply, competitor density, fi ne-scale solar radia-

tion, and other fi ne-grained parameters (Soberón 2007). At intermediate scales, 

land cover, aspects of terrain, and vegetation phenology are likely to become 

relevant. Finally, at coarser scales (regional to global), the signature of sceno-

poetic variable s is generally expected to be dominant (Mackey and Linden-

mayer 2001, Pearson and Dawson 2004).

Thanks to the growth of spatial modeling techniques and remote-sensing 

systems, high-quality digital environmental data are increasingly available. 

Such data are being generated at diverse spatial extents and resolutions, from 

global to local, and with pixel sizes ranging from �100 to 105 or more meters 

(Quattrochi and Goodchild 1997). However, it should be kept in mind that most 

environmental dimensions summarized by such easily available datasets cor-

respond to scenopoetic variables, such as climate, topography, and land cover.

Indirect variables are useful for niche modeling only to the extent that they 

correlate consistently with direct factors (Austin 2002). For example, elevation 

(an indirect variable) may provide a good surrogate for temperature (a direct 

variable) across certain extents and latitudinal ranges, but may be misleading 

across broader areas. This mismatch occurs because correlations between ele-

vation and direct variables such as minimum temperature differ across space 

Figure 6.2. Schematic example of how different suites of environmental factors 

may affect distributions of species across a range of spatial scales. Scale domain 

indicates ranges of extents over which particular suites of ecological factors are 

surmised to act most strongly. Adapted from Pearson and Dawson (2003).
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(especially across latitude): species do not respond directly to elevation, but 

rather to changes in temperature, oxygen availability, and air pressure that are 

themselves affected by elevation. Hence, a species living at high elevation in 

a low-latitude region may be restricted to lower elevations in higher-latitude 

areas. Some indirect variables combine different types of direct or resource 

variables, thus effectively reducing dimensionality in the analysis (Guisan and 

Zimmermann 2000). A good example is the Normalized Difference Vegetation 

Index (NDVI), derived from the red and infrared bands of remote sensing sys-

tems, that summarizes concentration of chlorophyll (Myneni et al. 1995); NDVI 

has been used successfully in niche modeling applications (Egbert et al. 2002, 

Anderson et al. 2006). Mechanistic models may play a potential role in clarify-

ing which variables are direct and which are indirect.

Another factor affecting decisions regarding which variables to include in 

modeling is whether the goal is to reconstruct occupied (GO) or potential (GP) 

distributional areas of species (Peterson 2006c), and over what time period. 

Some environmental variables are more static than others, in the sense that they 

change only slowly (e.g., topography and climate), while others are more dy-

namic (e.g., land cover), especially given the pervasive infl uence of humans 

upon the environment. When the goal of a study is to approximate potential 

distribution patterns over several or many decades, inclusion of static predic-

tors is convenient, while when the study question centers on the current distri-

bution of a species over a very short timescale of one or a few years, dynamic 

and more proximal variables become necessary (Anderson and Martínez-Meyer 

2004, Peterson et al. 2005a). ENM has to date been applied mostly in global 

to regional analyses, and to a lesser extent in meso- and microscale studies, but 

not refl ecting a limitation of the approach. Rather, as a correlative technique, 

ENM is not scale-sensitive, except that at some point bionomic habitat consid-

erations may come to dominate distributional processes.

In practice, different strategies have been developed for selecting variables 

for inclusion in niche-modeling studies. Some researchers prefer to use a few 

preselected, relatively uncorrelated variables that correspond directly to known 

physiological rules, such as temperature and water stress (Huntley et al. 1995, 

Pearson et al. 2002, Huntley et al. 2004, Baselga and Araújo 2009). At the other 

end of the spectrum, when no previous knowledge exists regarding key factors, 

large datasets (i.e., 10 to 103 variables)—some highly correlated—have been 

used (Stockwell 2006), albeit not without strong criticism (Peterson 2007b).

Both extremes have their drawbacks. When few variables are used, the 

models risk missing important factors thus resulting in an undercharacteriza-

tion of the niches; in this case, niche models are likely to produce overly broad 

potential distributional areas (Barry and Elith 2006). On the other hand, over-
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dimensionality (i.e., excessive numbers of variables) can lead to overfi t  models 

or loss of degrees of freedom in regression-based approaches, and geographic 

distributions may be underrepresented, particularly when small numbers of 

occurrence records are used (Peterson and Nakazawa 2008; chapter 7). Col-

linearity  among these often highly correlated suites of variables can impede 

application of some statistically based model algorithms (Guisan and Zimmer-

mann 2000). Correlated  variables may cause additional problems, especially 

in terms of producing overly dimensional (i.e., highly complex) niche models, 

which can complicate model development and confound efforts to characterize 

niche models in ecological terms.

As a consequence, to avoid these problems, several schemes have been pro-

posed for exploring variable interrelationships and reducing dimensionality 

prior to model development (Sweeney et al. 2006). Some investigators have 

used correlation analysis to identify least-correlated sets of variables (Baselga 

and Araújo 2009), and others have rotated (transformed) original variables to 

produce new, uncorrelated (orthogonal) axes via principal components analy-

sis or other ordination techniques, and then selected the most important of 

these dimensions as input for modeling (Manel et al. 2001, Hirzel et al. 2002, 

Peterson et al. 2007c). Finally, particularly among investigators using nonsta-

tistical, evolutionary computing techniques, it is common to include large 

numbers of variables, and simply to allow the algorithm to “sort it out” (i.e., 

determine which variables hold the most predictive information for the species 

of interest) while controlling complexity via different means in different algo-

rithms (see chapter 7). These issues of dimensionality and data transformation 

and how they affect niche model quality are little-explored, so further research 

is needed to improve current practices in this area, particularly as regards in-

corporation of prior knowledge about organisms, their natural history, and their 

physiology.

ENVIRONMENTAL DATA IN PRACTICE

The conceptual aspects mentioned earlier regarding environmental data for 

niche modeling offer general guidance for designing and choosing such data-

sets. However, a number of more practical considerations must also be weighed. 

The following section details some of these points.

Data Preparation

Regardless of the number and type of environmental variables chosen, all vari-

ables need to meet certain cartographic standards to match the characteristics 
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of the occurrence data. First, in current systems, all environmental datasets 

must be in a raster GIS format—that is, cell- or pixel-based fi les, in which each 

cell is assigned a value of the corresponding environmental variable. Data in 

other formats (e.g., point-based measurements such as weather stations, vector 

GIS polygon-based data layers for soil or vegetation classes) must be con-

verted to raster grids, and any cross-scale issues managed (e.g., the assumption 

of uniformity across entire grid cells, coarse spatial resolution of polygon 

data). Hence, the environmental dataset is composed of a series of raster fi les 

(� “layers”) representing the variables to be included in the analysis. Sec-

ond, both the raster fi les and the corresponding occurrence data must be in the 

same cartographic system (e.g., geographic projection, datum, coordinate sys-

tem, units). Finally, for many analytical platforms, the raster fi les must match 

spatially, i.e., they must have the same spatial extent (numbers of rows and 

columns), geographic position (coordinates of origin), and resolution (cell size 

or grain).

In studies involving transfer ring the ecological niche model f(X) onto alter-

native spatial or temporal geographic scenarios, additional environmental data-

sets are necessary. For example, in studies of biological invasions (chapter 13) 

and climate change (chapter 12), sets of environmental layers corresponding to 

the other place or the other time period, respectively, must be assembled. These 

datasets must contain the same variables as the ones used in calibration, but not 

necessarily the same spatial extent or resolution.

Data Quality

As in any other quantitative analysis, the quality  of input data is fundamental. 

However, researchers all-too-commonly ignore known or possible defi ciencies 

and biases inherent in the geographic data they use in developing models 

(Barry and Elith 2006). In part, these lapses may result from the fact that most 

users are not involved in generating environmental data products, but rather, 

use what is available to them. Modelers—before beginning analyses—should 

examine the metadata and ancillary fi les accompanying the datasets that they 

plan to use to learn about the sources, methodologies, and known limitations. 

In this way, it is often possible to ascertain whether a raster grid is useful or not 

in a particular analytical challenge.

Similarly, it is not uncommon to have access to more than one source for 

the same type of variable. By knowing the source and type of primary data 

used in generating such maps, one can decide which is more reliable, or one 

can identify means of combining multiple sources, provided that the informa-

tion that they include is compatible. In this sense, the metadata accompanying 

short
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geospatial datasets can be as important as the actual data in assuring the proper 

use of the information.

Spatial Extent

Spatial extent  refers to the surface covered by the area of analysis (for example, 

one spatial extent might encompass all of South America, while another, nar-

rower extent may encompass only Colombia). In general, the spatial extent of 

the analysis will match the extent of the phenomenon under study. For exam-

ple, it would not make much sense to choose all of South America as an extent 

of analysis for model calibration if the goal of the study is to identify and map 

potential dispersal routes of a bird species endemic to a narrow elevational 

range in the Eastern Andes of Colombia. Rather, given considerations discussed 

in chapter 7, considering the natural history and dispersal abilities of the species 

in question (i.e., particularly M in the BAM diagram, and in some cases B as 

well), an appropriately restricted extent should be chosen.

Indeed, choice of a particular extent of analysis has direct implications for 

model characteristics and quality. For modeling algorithms that use absence, 

“pseudoabsence,” or “background” data (see chapter 5) data as inputs, such as 

Maxent (Phillips et al. 2006), GARP (Stockwell and Peters 1999), and many 

multivariate statistical approaches (Elith et al. 2006), an analysis over too broad 

a spatial extent may lead to inclusion of absence, pseudoabsence, or back-

ground data from areas that a species fails to inhabit for reasons other than its 

scenopoetic existing fundamental niche (EA). For example, such regions may 

lie outside the dispersal abilities (at present or historically) of the species. Ab-

sence, pseudoabsence, or background data from such regions are irrelevant or 

even misleading to the model (Anderson and Raza 2010; see chapter 7 for fur-

ther discussion on this point).

Spatial extent also has direct implications for the results of essentially all 

approaches to evaluation of such models (see chapter 9). Evaluation methods 

are highly sensitive to the percentage of the overall study region in which the 

species is predicted to be present (Jiménez-Valverde et al. 2008). This point is 

developed in much greater detail in chapter 9.

Resolution in Space and Time

Resolution  refers to the size of the subdivisions—in time or in space—that are 

applied to the datasets under consideration. In this book, unless otherwise noted, 

we refer to spatial resolution (or “grain”): the size of the cells or pixels into 

which the extent of analysis is subdivided in the raster maps (fi gure 6.3). As 

with spatial extent, the spatial resolution of analysis should match the spatial 

short
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resolution of the biological phenomenon under study. For example, a pixel size 

of 1 km2 may be an appropriate spatial resolution for analyzing distribution 

patterns of terrestrial mammals, but it is far too coarse for analyzing the distri-

bution of a soil nematode, which may be responding to environmental signals 

on much-fi ner spatial scales (see chapter 3).

Spatial resolution also impacts the sample sizes of occurrence data that are 

available. At very coarse resolutions, nearby occurrence records will often fall 

within the same large pixels. Because most niche modeling algorithms and ap-

Figure 6.3. Illustration of different spatial resolutions in geospatial datasets. 

Shown are MODIS satellite data from the region of the northern tip of Australia 

summarizing photosynthetic mass at 250 m resolution in gray scale, on top of 

WorldClim climatic data at 17 km resolution in the background, in black. Shown 

is the northern tip of Australia. Note that even the defi nition of islands as separate 

depends on the pixel resolution.
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plications reduce all occurrences in the same pixel to a single data record (so 

as to give presence data as opposed to something akin to abundances, and also 

in some cases reduce the artifacts of unequal sampling intensity across geogra-

phy), the number of unique records available for analysis thus may be reduced 

substantially at coarse resolutions, but is maximized at the fi nest resolutions.

Frequently, when environmental data are obtained from diverse sources, 

spatial resolution will vary among maps. Most niche modeling algorithms re-

quire uniform cell sizes across environmental datasets, so resampling (chang-

ing cell size) procedures are often necessary. Reducing large pixels to sets of 

small pixels (downscaling) by simply subdividing larger cells is common, 

but introduces an appearance of fi ne resolution in the dataset (false precision) 

that must be interpreted with caution. When downscaling is necessary, more-

advanced spatial techniques (e.g., kriging) may provide more realistic results 

than simple nearest-neighbor methods; however, the latter retain the infor-
mation from the original data source, even though the resolution has been in-

creased. On the other hand, when data are coarsened in resolution (upscaling), 

fi ne-grained information may be lost because small pixels are averaged or 

other wise summarized to assign values to larger pixels.

Temporal resolution —the time span that a particular environmental param-

eter covers—is another important issue for consideration that is linked to the 

distinction between scenopoetic and bionomic variables. Some variables, par-

ticularly scenopoetic  ones, have such slow dynamics that they can be con-

sidered effectively static over years to many decades or more—for example, 

topography does change, but not markedly within the ecological time spans 

important to the ecological and geographic distributions of species. Other vari-

ables are much more dynamic, infl uencing species’ distributions in the middle 

and short terms, such as plant phenology or circadian cycles. In essence, eco-

logical niche models are static, in the sense that correlations between species’ 

occurrences and variables are made in a single temporal snapshot, over which 

time period we assume that the species’ niche does not evolve. Hence, to cap-

ture a biogeographic or ecological phenomenon of interest adequately, occur-

rence and environmental data must coincide temporally.

Temporal correspondence between occurrence and environmental datasets 

also becomes important for studies through evolutionary history. For example, 

fossil records may be used to estimate paleodistributions of species for biogeo-

graphic and evolutionary analyses. In such cases, the time periods of both the 

fossils and the climatic reconstructions on which the models are based must 

match. Currently, however, such matching has only been possible at coarse tem-

poral resolutions, such as 103 to 104 years, given the low density of fossil data 

and the coarse time slices available for paleoclimatic data (Martínez-Meyer 
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et al. 2004a). Finer matching of occurrence records and climatic data (e.g., 

by decade) has been accomplished for studies of species over the past century 

(Araújo et al. 2005a, Nakazawa et al. 2007), and indeed month-by-month match-

ing has been achieved in one study of insect distributional dynamics (Peterson 

et al. 2005a).

Types of Environmental Data

Environmental data  for niche modeling come in many different formats and 

resolutions, and summarize many different environmental parameters. The 

basis for characterizing environmental landscapes depends on how fundamen-

tal environmental factors (e.g., water, energy, time, and space) are summarized 

in measurable correlates (e.g., precipitation and humidity, solar radiation and 

prey abundance, growing days and season length, and patch size, respectively), 

and how these factors in turn relate to intrinsic growth rates (see equation 3.2) 

of populations of the species in question, or at least to their presence in G
data

. 

In the following sections, we present a brief review of several relevant charac-

teristics of widely used environmental datasets, and how these characteristics 

likely infl uence niche model performance.

Source. Geospatial environmental data used in niche modeling are derived 

from diverse sources and are generated via diverse methodologies. A fi rst cat-

egorization of environmental datasets is thus based on the origin of the infor-

mation. Some environmental surfaces have been generated from data collected 

from ground-based sampling stations (e.g., weather stations) and then interpo-

lated spatially (often with environmental covariates like elevation) to provide 

information for the whole region. A typical implementation of this approach is 

the generation of climatic datasets for the present and recent past (New et al. 

1997, Hijmans et al. 2005). These climatic datasets are the most widely used 

environmental-data resources in niche modeling, and yet at times can be some-

what “empty” with regard to original information content: e.g., a raster climate 

layer at 1 km2 resolution across the huge Congo Basin in central Africa may in 

truth be based on data from only a few widely spaced climate stations.

Environmental raster maps may also be generated using biophysical model-

ing, as in the case of the General Circulation Models (GCMs) used for produc-

ing future (IPCC 2007) and past [e.g., Last Glacial Maximum (LGM); Shin 

et al. 2003] climatic scenarios. Thanks to enormous efforts by the Intergovern-

mental Panel on Climate Change (IPCC), future climate scenarios are now well-

coordinated, and resulting data are openly and readily available (IPCC 2009). 

Numerous GCMs are now available for the whole world at coarse resolutions 

(i.e., �1°); Regional Circulation Models (RCMs) are now also increasingly 
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available for several parts of the world with improved resolution (i.e., 0.1 to 

0.3°). When RCMs are not available, or available spatial resolution is not suf-

fi cient for the purposes of a given study for whatever reason, techniques for 

downscaling environmental data now have been explored in some detail (Wilby 

and Wigley 1997). Because of the complex process of generating models, sce-

narios built and modifi ed in this way may present high levels of uncertainty 

that can be propagated into niche models (Beaumont et al. 2007).

A third important data source is remotely sensed imagery. Several environ-

mental dimensions can be measured via remote sensors, including elevation 

and derivatives (e.g., slope, orientation, etc.), land cover features (at levels of 

processing ranging from raw refl ectance data to vegetation indices to fully 

interpreted land-cover classifi cations), and ocean-surface features. Remotely 

sensed datasets have been used as predictor variables in diverse niche model-

ing applications, with interesting results (e.g., Anderson et al. 2006, Bradley 

and Fleishman 2008), proving particularly convenient and information-rich 

when modeling distributions with short-term temporal resolutions. Here, we 

stress the importance of temporal matching between occurrence data and satel-

lite-derived predictors. For instance, remote sensing products such as vegeta-

tion indices are quite suitable for use with occurrence data obtained for a spe-

cies in the same time period as when the images were collected, but should be 

applied with caution when using natural history museum data collected over a 

broader time span (e.g., Raxworthy et al. 2003, Graham et al. 2004b). These 

problems result from the fact that many areas where the species was originally 

collected may now have been transformed into different land cover types, thus 

potentially leading to erroneous predictions. Similarly, the spatial resolution of 

occurrence data and environmental data must match (i.e., via the maximum 

estimated error, in both datasets) to avoid problems with error propagation (see 

chapter 5).

Measurements and units. Environmental variables can be represented in 

 raster maps in several ways. The most common systems are “categorical” or 

“nominal ,” in which elements are described with names or numbers with no 

quantitative value or order among categories (e.g., soil classes); “ordinal,” in 

which elements are sorted in a meaningful order, but no quantifi cation is as-

signed to the categories, and no information on the numeric difference between 

categories is provided (e.g., “low,” “medium,” and “high” values for an index 

to degree of habitat conservation); “interval,” or quantitative measurements in 

which values are grouped into categories (e.g., 0 to 10 mm, 10 to 20 mm, 20 to 

30 mm, etc.); and “continuous,” in which precise measurements are reported 

along a continuous gradient, without categorization or other grouping (for 
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instance, most temperature and precipitation data). In niche modeling, the 

continuous variable representations are both the most commonly used and also 

generally the most informative. Categorical data are frequently not handled 

appropriately (e.g., in GARP) or not at all (e.g., in BIOCLIM). A few programs 

have implemented features that both recognize and manipulate categorical data 

correctly (e.g., Maxent). These issues are treated in greater detail in chapter 7.

Diverse environmental variables are measured in different units and mea-

surement systems. Some niche modeling algorithms, like Ecological Niche 

Factor Analysis (ENFA; Hirzel et al. 2002), require standardization or nor-

malization of variables before analysis, while others (e.g., desktopGARP) in-

corporate standardization within their processing. Other approaches, such as 

Maxent (Phillips et al. 2006), are able to manage variables in native units. Most 

modeling algorithms are based on real-number or integer variables, but a few 

variables are expressed in alternative measurement systems. For example, di-

rectional exposure (“aspect”) is often expressed in radial units, or in terms of 

northing and easting. It is quite important to assure that the modeling algorithm 

is able to manage such measurement systems appropriately in its rule 

development.

For convenience in GIS processing, real-number representations can be 

cumbersome, whereas integer representations are much more convenient. As 

a result, investigators frequently multiply decimal values by 10, 100, or 1000, 

and then convert to integer representation to simplify the data (e.g., Hijmans 

et al. 2005).

Ancillary Data

Niche modeling has been challenged by the need to integrate into analyses ad-

ditional factors that infl uence distributions of species beyond simple sceno-

poetic and bionomic variables; we refer to such factors as “ancillary data .” For 

example, geographic barriers and historical events play important roles in 

shaping occupied distributional areas of species GO, and data pertaining to these 

factors can also be included in the latter stages of niche modeling exercises 

(i.e., after calibration; Soberón and Peterson 2005). Another example is the use 

of land-use summaries or vegetation classifi cations to refi ne distributional esti-

mates calibrated based on coarser-resolution variables (Sánchez-Cordero et al. 

2005).

In general, for the challenge of modifying raw model predictions (e.g., of 

GP) into more accurate representations of occupied distributional areas of spe-

cies (GO), data layers summarizing environmental factors associated with dis-

persal potential becomes of prime importance (see chapter 8 for in-depth treat-

ment of these issues). For example, investigators have used maps of biogeographic 
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regions as hypotheses of regions accessible to species over biogeographic time 

periods (Anderson and Martínez-Meyer 2004); others have explored the struc-

ture of spatial autocorrelation  in species’ occurrences (Smith 1994, Araújo and 

Williams 2000, Keitt et al. 2002, Segurado and Araújo 2004) to provide this 

sort of information. However, much work needs to be done in this area.

Assuming that spatially referenced variables can provide information about 

distributions, the researcher may ask why not include these factors as covari-

ates in niche models, just like the scenopoetic or bionomic variables. Examples 

that have been used in the literature include latitude and longitude, and dis-

tance to coast, all of which are explicitly spatially referenced. Concerns exist 

on conceptual and statistical grounds. The conceptual concern is that historical 

and other dispersal-based factors that limit and shape actual geographic distri-

butions (i.e., the occupied distributional area GO) operate in the geographic 

domain, whereas niche modeling reconstructs ecological niches in the environ-
mental domain. This separation of spaces makes many inferences possible that 

would otherwise be obfuscated; by inserting history into model calibration, 

the researcher would lose the predictive power of niche models, i.e., the ability 

to estimate GI. The statistical concern is that the spatial structure of species 

occurrences is determined both by autocorrelation among environmental vari-

ables and autocorrelation in biological factors driving distributions (e.g. dis-

persal, speciation, population extinctions, etc.); distinguishing the two sources 

of spatial structure in species occurrences is a challenge in itself (Segurado et 

al. 2006). In addition, when spatial covariates are included within models, it 

is common to fi nd that they explain the greatest proportion of the variation in 

the data, thus limiting the useful explanatory power of scenopoetic or bionomic 

variables (Araújo and Williams 2000, Segurado et al. 2006, Dormann et al. 

2007), which can be a serious problem when models are used for prediction, as 

indicated earlier. An alternative procedure, which we favor, at least in concept, 

is to separate the process of modeling niches from that of modeling spatial pro-

cesses determining species’ distributions. For an overview of approaches to 

postprocessing of distributional predictions (model outputs), see chapter 8.

SUMMARY

Environmental datasets that are of potential utility in ecological niche model-

ing are numerous and come from very diverse sources. These datasets must be 

pondered in terms of the information that they may (or may not) offer to the 

modeling process. Direct, indirect, and resource-related variables can be dis-

tinguished with respect to whether they have relevance to the physiology of the 
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organism in question, and by whether they are consumed or affected by it; 

somewhat distinctly, distal and proximal variables can be distinguished with 

regard to how immediate their effects on the organism are. In more practical 

terms, ideas behind variable selection for niche modeling are outlined, and chal-

lenges of preparing data, checking data quality, and assessing data characteris-

tics (e.g., extent, resolution, source) are reviewed.
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Modeling Ecological Niches

In the preceding two chapters, we discussed the biological occurrence (chap-

ter 5) and environmental (chapter 6) data necessary for developing ecological 

niche models. In this chapter, we focus on how to use these data to create mod-

els that characterize species’ ecological niches in E-space (which can then be 

applied to and visualized in regions of G). The task is to characterize every cell 

within a region in terms of quantitative values related to probability of occur-

rence (or group membership), as a function of the environmental conditions 

presented in that cell. In the terminology presented in chapter 4, we aim to cre-

ate a model, f̂ : a function constructed by means of data analysis, μ(G
data

,E), for 

the purpose of approximating the true relationship (i.e., the niche) in the form 

of the function f linking the environment and species occurrences (at least in 

GO and hopefully also in GI).

An important consideration here is the use for which one is developing the 

model (Peterson 2006c). That is to say, a very basic initial consideration is 

whether the model is intended for the purpose of prediction  or explanation  

(Araújo and Guisan 2006). In the specifi c case of niche models, a prediction-

oriented model might use methods and data that produce optimal predictions 

in geography, yet provide little in the way of interpretable environmental infor-

mation regarding the specifi c qualities of the niche being modeled. An expla-

nation-oriented model, on the other hand, might emphasize characterizing the 

niche in useful and understandable terms, even though it may not necessarily 

produce the best predictions across geography. However, some models may 

fulfi ll both realms well. These choices are quite fundamental, and should be 

borne in mind in reading the sections that follow.

We fi rst describe general principles regarding how modeling algorithms 

μ(G
data

,E) approach the task of fi nding some model f̂  (several possible prob-

abilities, suitability functions, and so on exist that may be of interest) about the 

true, but unknown, function. We then describe some commonly used algo-

rithms. We do not aim to give detailed descriptions of individual algorithms, but 

rather to provide an overview of the different types of approaches that are used 

(e.g., climatic envelopes, general linear models, machine learning algorithms), 
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and then proceed to classify algorithms according to their requirements in 

terms of occurrence data. We proceed to describe important considerations 

about model calibration and defi nition of thresholds for converting continuous 

or ordinal suitability values into binary predictions of presence versus absence. 

Finally, we discuss differences among alternative modeling methods and the 

diffi culties associated with selecting a general “best” approach.

WHAT IS BEING ESTIMATED?

An important consideration that should perhaps precede all others in this 

chapter is what is the “meaning” of the function f that is being estimated by the 

algorithms. Ideally, the model would produce a response variable that would 

relate directly to some quantity of biological interest, but what variable? Many 

publications presenting modeling algorithms have indicated that they estimate 

“probability of occurrence, given the environment” (e.g., Keating and Cherry 

2004), which generally requires the existence of true absence data and an un-

biased sampling scheme; others estimate degree of resemblance to the environ-

ment in the sample points (~ suitability; Hirzel et al. 2002, Farber and Kadmon 

2003), or simply membership (or not) in a well-defi ned set (Busby 1991, Car-

penter et al. 1993). Still others (e.g., Maxent) estimate very different quantities 

that can be transformed to yield probabilities of presence under certain assump-

tions related to the BAM diagram (Phillips and Dudík 2008).

In fact, it has been argued that, strictly speaking, probabilities of occurrence 

cannot be estimated without rigorous comparisons of presence and absence data 

(Ward et al. 2009), and that most niche modeling applications using presence-

only data can at best estimate indices of relative suitability (Ferrier et al. 2002). 

The issue of what different algorithms do is central to all phases of niche mod-

eling, and particularly to model evaluation. To clarify this important point, we 

will use arguments based on the BAM-related probability tree, developed in 

chapter 5. Equation 5.6 relates probability of presence to probabilities of dif-

ferent conditions being fulfi lled; this equation, by application of Bayes’s rule, 

gives:

 P(Y � 1)
 P(Y � 1|X � g) � PM(g)PA(g)PB(g) � ———— P(X � g|Y � 1). (7.1)
 b(g)

In words, equation 7.1 relates probabilities related to the circles in the BAM 

diagram (a mechanistic or process-based approach) to correlative approaches 

requiring absence information [i.e., P(Y � 1|X � g)] and others that can operate 

short
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with background or pseudo-absence data [P(X � g|Y � 1)]. Different objects 

of ecological interest can now be described in terms of this equation, and some 

confusions can be clarifi ed. First, we discuss the difference between ecological 

niche modeling and species distribution modeling. A multiplicity of interests 

and objectives has caused considerable confusion regarding the activities en-

circled in those terms (Peterson 2006c). Under the niche modeling perspective, 

interest focuses on the set of environmental variables η(g) at the sites g where 

the combined effect PAB(g) � PA(g)PB(g) is large; niche modeling also focuses 

on environments occurring in cells having large PA(g) (i.e., the abiotic contribu-

tion to the distribution). On the other hand, distribution modeling focuses inter-

est on large values of PBAM(g) � PM(g)PA(g)PB(g), which characterizes GO. The 

two approaches often overlap in their aims and methods, but too often their 

specifi c objectives are left implicit (i.e., inadvertently hidden to the reader). It 

is not uncommon in the literature to apply methods that estimate different parts 

of equation 7.1 as if they were equivalent, and to use the two names inter-

changeably or carelessly. In what follows, we clarify this situation.

The Probability of Occurrence of a Species,

Conditional to a Site

A quantity of paramount importance is the probability of a species being pres-

ent in a given cell: P(Y � 1|X � g). If true absence data are legitimately avail-

able and are drawn from all parts of G (i.e., from all areas inside and outside of 

A, B, and M, then P(Y � 1|X � g) is obtained directly by modeling procedures 

such as GLM, GAM, regression trees, and others (Thuiller et al. 2003, Keating 

and Cherry 2004, Pearce and Boyce 2006, Phillips et al. 2006, Phillips and 

Dudík 2008). P(Y � 1|X � g) obtained directly represents a purely correlative 

result, without any hypothesis about the mechanisms that generate a presence 

record for a species. In fact, it is perfectly feasible to obtain fairly well-calibrated 

correlative models by fi tting the preceding probability to geographic coordi-

nates as covariates (Bahn and McGill 2007). However, equation 7.1 suggests 

the equivalence of P(Y � 1|X � g) with PBAM(g) � PM(g)PA(g)PB(g). There-

fore, if true absences were available and the sampling points were randomly 

taken from throughout G, one is estimating the probability that the three con-

ditions in the BAM diagram (defi ning GO) are met, and the corresponding en-

vironments represent the occupied niche space η(GO) � EO. If, however, ab-

sence points are drawn from areas outside GP but within GM (and also within 

GB, if the Eltonian Noise Hypothesis is not true), one can estimate the prob-

ability that the conditions B and A (or just A) are met (see also Anderson and 

Raza 2010).

short
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1 0 0  C H A P T E R  7

Probability of Visiting a Site Conditional

to Presence of the Species

A second important quantity is the conditional probability P(X � g |Y � 1), 

which in words means the conditional probability that the observer visits site g 

given that it holds populations of the species (Phillips and Dudík 2008). This 

probability is important because it is obtainable when true absences are lack-

ing, by means of using background data. This probability, as can be seen from 

equation 7.1, is proportional to the probability of presence only if the visitation 

probability b(g) is constant:

 P(Y � 1|X � g)b(g)
 P(X � g|Y � 1) � —————–———. (7.2)
 P(Y � 1)

Again, as in the previous section, the probability of presence being modeled 

depends on from which regions of G the absence (or background or pseudo-

absence) data derive. Although constant P(X � g) � b(g) represents an (often 

unstated) assumption of niche modeling, it is seldom constant or true in reality. 

Serious sampling biases exist in the great majority of occurrence datasets, where 

sites near to roads and other access points are visited with very high probabili-

ties, and large inaccessible regions may have very low probabilities of having 

been sampled (Bojórquez-Tapia et al. 1995, Soberón et al. 2000, Graham et al. 

2004b; see chapter 5). P(X � g |Y � 1) can be estimated by a variety of methods 

(for example, Maxent or regression methods using background or pseudoab-

sences; see the following). However, since data are really about observed pres-

ences, rather than actual presences, the problem becomes still more complicated: 

Phillips et al. (2009) showed that, when biases in sampling and detection are 

taken into account, P(X � g |Y � 1) relates monotonically to P(Y � 1|X � g) 

only if the sampling bias of the background data is equal to the bias of the oc-

currence data.

Direct Estimates of Subsets of Niche Space

It is important to notice that several methods do not provide estimates of prob-

abilities, but rather are procedures designed to construct certain sets, including 

particularly the so-called envelope methods (Pearce and Boyce 2006). We dis-

cuss this possibility by proposing the following formal identity:

 PBAM(g) � P[g ∈M � η(g) ∈ η(A) � g ∈ B] (7.3)

where η(g) � e→g represents the vector of scenopoetic variables in cell g (see 

chapter 3), and η(A) is the set of environments in the abiotic region, or the 

scenopoetic existing fundamental niche, and B is the set of favorable biotic 

environments. Basically, equation 7.3 is a translation of the probability tree 
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term to an expression in terms of membership of the cell to a certain geo-

graphic set (the accessibility set M), and of its environment to the environmen-

tal set of abiotic (A) and biotic (B) niches (the latter frequently cannot be ex-

pressed in terms of scenopoetic variables). Neglecting the B term, the right side 

of equation 7.3 can be transformed to

 P(g ∈ M � η(g) ∈ η(A)) � P[g ∈ M |η(g) ∈ η(A)]P[η(g) ∈ η(A)]. (7.4)

Different envelope or “profi le” methods obtain subsets {η(A)} of environmen-

tal vectors directly, by using the observed environmental values of presences 

to classify the rest of the set. Envelope methods like BIOCLIM (Nix 1986), 

Support Vector Machines (SVMs; Guo et al. 2005), or HABITAT (Walker and 

Cocks 1991), which will be discussed later, simply use the outlying observations 

in environmental space to enclose a larger subset of environments. BIOCLIM 

uses a hyper-rectangle, SVMs use hyperspheres, and HABITAT uses a convex 

polygon. Distance methods, like many Mahalanobis distance-based approaches, 

use the entire set of observations in E-space to classify every environmental 

vector in terms of distance to some aspect of the known observations. These 

methods generate, for every element in E, an index, normally interpreted as an 

index of habitat suitability for the species (e.g., they may be indices of environ-

mental similarity to the centroid of the observations). In general, these methods 

then provide direct estimations of {η(A)} (albeit with a number of accompany-

ing assumptions).

MODELING ALGORITHMS

We use the term “modeling algorithm”  to refer to the procedure, rule, or math-

ematical function used to estimate the species’ ecological niche as a function 

of a suite of environmental variables; we denote this function as the model 

μ(G
data

, E) � f̂ . The algorithm is, in some ways, the “core” of the model, but 

it should be remembered that the modeling algorithm is just one part of the 

broader modeling process: other factors, including selection of the reference 

regions G and M (see the following and chapter 3), choice of environmental 

variables (see chapter 6), characteristics of the occurrence data (see chapter 5), 

approaches to model calibration (this chapter), and choice of decision thresh-

olds (this chapter), are key elements of the process that may be varied regard-

less of the algorithm being used.

As we said earlier, diverse algorithms have been applied to the task of mod-

eling ecological niches and delineating suitable geographic distributional areas 

(GP and GO). We do not attempt here to provide a detailed review or exhaustive 

07peterson.097_137.indd   10107peterson.097_137.indd   101 6/8/11   8:46 PM6/8/11   8:46 PM



1 0 2  C H A P T E R  7

list of approaches. Rather, we aim to provide an overview of the general prin-

ciples used by different algorithms, and to provide practical advice for select-

ing suitable methods; numerous approaches are used commonly for modeling 

niches and distributions, and new methods (or variants on existing methods) are 

published every year. Published studies have given various algorithms names or 

acronyms to methods—for example, “Maxent” refers to a particular implemen-

tation of the maximum entropy principle (Phillips et al. 2006); others include 

GLM, GAM, GARP, ANN, etc. In several cases, algorithms have been imple-

mented in user-friendly software packages that are freely available.

Some important differences exist between modeling algorithms, including: 

(1) the sorts of biological data that the method requires (i.e., presences only, 

presences and true absences, presences and background data, and presences 

and pseudoabsence data); (2) the underlying methodological approach (e.g., 

algorithms may be based on regression methods, classifi cation procedures, 

machine-learning procedures, or Bayesian statistics); (3) the form of output 

(e.g., continuous predictions versus binary or ordinal predictions); (4) the ca-

pacity to generate highly complex versus relatively simpler modeled response 

surfaces with respect to particular environmental variables; and (5) the ability 

to incorporate categorical environmental variables (see chapter 6). Hence, al-

gorithms may be classifi ed in many different ways. In the following para-

graphs, we classify models by their biological input data requirements, which 

is a very practical consideration when selecting a method. Requirements of 

different algorithms with respect to type of input data are as follows:

1. Presence-only  approaches. Some approaches rely solely on presence 

records, without need for reference to other samples or any other infor-

mation drawn from the study area.

2. Presence/absence  approaches. Some algorithms function by contrasting 

sites at which the species has been detected with sites where the species 

has been documented as absent, and therefore require both presence and 

absence data (see chapter 5). It is important to note that, in principle, any 

presence/absence algorithm can be implemented using background or 

pseudoabsence data (see the following).

3. Presence/background  approaches. These approaches assess how the 

environment where the species is known to occur relates to the environ-

ment across the entire study area (the “background”). Therefore, such 

approaches use presence records along with environmental data drawn 

from the whole study area, or at least a very large sample drawn from 

across the study area, potentially including the known occurrence 

localities.
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4. Presence/pseudoabsence  approaches. Some approaches sample “pseudo-

absences” from the study area, aiming to compare known occurrence 

localities with a set of localities having some probability of constituting 

presence localities that is below unity. The subtle difference from the 

background approach earlier is that pseudoabsence data are sampled only 

from sites at which the species is not known to occur (but note that this 

distinction has not been applied consistently in the literature). We do 

note, however, that unless a very broadly distributed species is very well 

sampled, background- and pseudoabsence-based results will not differ 

dramatically.

For the sake of completeness, we note that additional approaches have been 

developed that also incorporate information on distributions of other species, 

sometimes termed “community modeling” (Ferrier et al. 2004, Elith et al. 2006, 

Baselga and Araújo 2009), although these methods are not treated in detail in 

this book. This idea should not be confused with the use of interactions with a 

possible or known host-plant species as a biotic covariate in models (Araújo 

and Luoto 2007) or information from a target group to estimate sampling bias 

or for tests of artifactual absences (Anderson 2003). We note that a critical 

feature is what kind of absence data are used in analyses, as is detailed in the 

next several sections; we describe examples of commonly used algorithms that 

fall within each of the four categories of biological input occurrence data. Our 

descriptions are intended only to provide a broad overview of the approaches 

taken by different algorithms, so we encourage readers to consult the materials 

referenced for more in-depth discussion of particular algorithms.

Presence-Only Methods

Perhaps the simplest approach to modeling niches is by fi tting “environmen-

tal envelopes”  (or climatic envelopes), identifying shapes in multidimensional 

E-space that enclose environments associated with known occurrence localities. 

One of the earliest methods developed for this purpose is BIOCLIM (Busby 

1991), which calculates a box-like minimal rectilinear envelope (fi gure 7.1A). 

BIOCLIM envelopes thus enclose within a rectangular (in a multidimensional 

space) envelope values in the range between the minimum and maximum val-

ues occupied by a species across all environmental variables (after Nix 1986). 

This box-like envelope is often estimated at different percentiles so as to incor-

porate different proportions of the observed occurrence localities (for example, 

the multidimensional envelope may be calculated so as to include 90% of oc-

currence localities, excluding the farthest outliers; see, e.g., Lindenmayer et al. 

1991). Although transparent and straightforward, it suffers from a number of 
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drawbacks, notably the inability to model interactions among variables and the 

inability to fi t more complex “shapes” in ecological space.

Similar is the HABITAT approach (Walker and Cocks 1991), which fi ts en-

vironmental envelopes using minimum convex polygons or polyhedra, as illus-

trated in fi gure 7.1A. HABITAT thus encloses occurrence records more tightly 

within E-space than does BIOCLIM, allowing for reconstruction of inter-

actions among variables, at least to some degree. If the environmental variables 

of the observations are uncorrelated, the two methods yield similar results 

(Guisan and Zimmermann 2000). Any notable obliquity in the arrangement of 

observations in E-space, however, will lead to overprediction by the rectangu-

lar box of BIOCLIM relative to HABITAT reconstructions.

Another set of methods based on presence-only records uses distances in 

E-space to fi t models. One such distance measure is the Mahalanobis distance, 

which can be used to measure difference in multidimensional E-space between 

the set of values for each site and the mean values for each environmental vari-

able, across all occurrence localities. Thus, the closer that a site is to the mean 

(or the closest) of observations in E-space, the smaller the Mahalanobis dis-

tance and the closer to optimal the site is considered (Rotenberry et al. 2006). 

Figure 7.1. Different approaches to calibrating ecological niche models in en-

vironmental dimensions (e.g., E
1
 and E

2
). Dots represent occurrence records. 

(A) BIOCLIM (dashed rectangle), HABITAT (solid line � minimum convex poly-

gon; Walker and Cocks 1991), and Mahalanobis distance-based models (dashed 

ellipse; Farber and Kadmon 2003). (B) A DOMAIN model, based on proximity in 

E-space to sites of recorded presence, where proximity is measured by the Gower 

metric (Carpenter et al. 1993); solid lines delimit regions of E-space classed as 

“within” the envelope, based on a set threshold. (C) Example response curves 

generated by GLM (solid line), GAM (dashed line), and MARS (dotted line) 

methods (Elith et al. 2008). (D) An example classifi cation tree, in which two envi-

ronmental variables E
1
 and E

2
 are divided at split points t

1
, t

2
, etc.; a decision tree 

then classifi es suitability as positive (1) or negative (0) along each branch (after 

Elith et al. 2008). (E) An example artifi cial neural network composed of “neu-

rons” (shown as black circles) connected by weights (connecting lines); environ-

mental variables E
1
, E

2
, etc. are input into the network and a machine-learning 

algorithm is used to “learn” a response (0, 1) at another point in the network by 

adjusting the weights (after Tarassenko 1998). (F) Illustration of Ecological Niche 

Factor Analysis (ENFA), comparing a focal species’ distribution with respect to 

an environmental dimension E
1
 (s, dark gray) against the background of the study 

region (b, light gray); the distribution of the focal species may differ from the 

background with respect to the means (ms � mb; marginality), and/or with respect 

to standard deviations (σs � σb; specialization; Hirzel et al. 2002).
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An underlying assumption, therefore, is that deviations from mean observed 

occurrence conditions are associated with lower niche “suitability.” Thus, 

 unlike the rectilinear approach, which relies on extremes of a distribution in 

E-space, Mahalanobis distance–based approaches measure distance to the mean 

of the observed distribution. This approach allows for oblique positioning of an 

elliptical envelope in E-space (see fi gure 7.1A), and is less sensitive to outliers 

because it is based on all occurrence localities, rather than on peripheral locali-

ties only (Farber and Kadmon 2003). Mahalanobis distance measures also ac-

count for collinearity among variables in calculating the variance-covariance 

matrix. Several improvements on the original approaches based on the Maha-

lanobis distance measure have been proposed (Rotenberry et al. 2006, Calenge 

et al. 2008). An alternative distance measure developed by Gower (1971) has 

been applied in the DOMAIN approach (Carpenter et al. 1993; see fi gure 7.1B).

The so-called Support Vector Machines (SVMs) are envelope-based classi-

fi cation methods that can be used with presence-only data in niche modeling 

applications (Guo et al. 2005). With this type of data, an SVM fi ts a hypersphere 

that minimally encloses known presences in E-space. SVMs can fi t complex 

shapes (Tax and Duin 1999), but for the presence-only case they are envelope 

techniques perhaps most analogous to Mahalanobis distance methods.

All of the methods mentioned here assign numerical values to different en-

vironments that are the elements of the set {η(g)}. These values express the 

similarity to observed environments in different ways. The user then, by explic-

itly or implicitly assigning a threshold, separates the elements of {η(g)} into 

those predicted as belonging to η(A) � EA and those outside of η(A) � EA. 

These methods identify sets of environments, or of geographic cells, without 

making reference to any probabilities.

Presence/Absence Methods

As discussed earlier, when both presence and true absence records are avail-

able, diverse approaches may be applied to estimate P(Y � 1|X � g) directly, 

and thus, in theory, and given representative sampling of G (see the preceding 

discussion), PBAM(g) � PM(g)PA(g)PB(g). Numerous such methods are based on 

regression analysis, a general statistical approach for relating a response (de-

pendent) variable to values of predictor (independent) variables. Generalized 

linear models (GLMs) are extensions of basic least-squares regression methods 

that are well suited for modeling ecological relationships because they can fi t a 

fl exible range of error structures. GLMs are based on an assumed relationship 

(the “link function”) between the mean of the response variable and a linear 

combination of the explanatory variables. This relationship defi nes the corre-

spondence between the species’ occurrence and individual environmental vari-
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ables (see the following), and the error distribution can be selected from among 

numerous alternative distribution types, including normal, binomial, Poisson, 

or negative binomial distributions (see fi gure 7.1C; Guisan et al. 2002). Gener-

alized additive models (GAMs) are semiparametric extensions of GLMs: like 

GLMs, GAMs also use link functions, but fewer assumptions are made regard-

ing the form of the function, so it is possible to fi t highly complex, nonlinear 

and nonmonotonic relationships (see fi gure 7.1C; Guisan et al. 2002). A related 

set of approaches includes Multivariate Adaptive Regression Splines (MARS), 

which are nonparametric and can fi t response curves with levels of complexity 

similar to GAMs (Elith and Leathwick 2007). MARS fi t linear segments to the 

data, meaning that MARS link functions consist of series of connected straight 

line segments, in contrast to the smooth curves of GAMs (see fi gure 7.1C).

Another approach for modeling with presence/absence data is to use clas-

sifi cation and regression trees (CARTs), which provide a fairly intuitive way to 

classify locations in multidimensional E-space. Classifi cation trees are con-

structed by repeated partitions of data into pairs of mutually exclusive groups, 

each as internally homogeneous as possible. In cases in which the response 

variable is categorical (e.g., presence/absence), homogeneity is assessed by min-

imizing the diversity of categories within each group; in this case, the method 

is referred to as a classifi cation tree. When the response variable is numeric, 

homogeneity is assessed using methods related to regression analysis, includ-

ing measuring sums of squares associated with group means, and the method 

is termed a regression tree (De’ath and Fabricius 2000). This splitting proce-

dure is applied to each group separately, and repeated until a tree is “grown.” 

Usually, a large tree is grown, and then is “pruned” back to achieve a desired 

level of simplicity or complexity (see fi gure 7.1D; for details see De’ath and 

Fabricius 2000).

Another suite of modeling approaches within this category are some (but 

not all) evolutionary-computing algorithms. While statistical approaches (e.g., 

GLM) assume the shape of a response curve, and estimate parameters for this 

model from the data, evolutionary-computing approaches do not assume a par-

ticular response curve, but rather “learn” the relationship between the response 

variable and its predictors (Breiman 2001). Such ideas have been applied to 

develop boosted regression trees (BRTs), which aim to improve performance 

of CARTs by fi tting many models and then combining them to create predic-

tions. BRTs build on trees fi tted previously by focusing sequentially on the ob-

served records that are hardest to predict (Elith et al. 2008).

Other machine-learning approaches that have been applied to the challenge 

of modeling ecological niches with presence/absence data include artifi cial neu-

ral networks (ANNs) and genetic algorithms (GAs). ANNs are computational 
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systems inspired by the structure and operation of biological neural systems 

that “learn” species’ responses to environmental predictor variables by repeat-

edly passing training data through a network of artifi cial “neurons.” By adjust-

ing internal structures of the neural network after each iteration, ANNs estimate 

a response in one part of the network based on inputs (environmental variables) 

at a different point in the network (see fi gure 7.1E; Hilbert and Ostendorf 2001, 

Pearson et al. 2002).

GAs are also computational tools that are inspired by biological phenom-

ena. The “genetic” part comes from the idea that rules are in the form of linear 

strings (i.e., linear combinations of variables or Boolean statements) that are 

“evolved” similar to how biological chromosomes evolve: point mutations, in-

sertions, deletions, and crossing-over events. At each step in the evolutionary 

process, the “fi tness” of the resulting rule set is evaluated based on an internal 

subsetting of the calibration dataset, changing rule characteristics randomly, 

and then selecting an optimal set of rules by testing results internally against 

known cases (e.g., McClean et al. 2005). A GA method that has seen consider-

able use in niche modeling applications (GARP) will be described in more 

detail later, as it uses pseudoabsence data in place of absence data.

Finally, SVMs (see the preceding discussion) can work with presence/ 

absence data. In this situation, SVMs use an algorithm that searches an optimal 

separating hyperplane capable of discriminating between presences and ab-

sences in E-space (Guo et al. 2005). SVMs do not estimate probabilities, but 

rather build sets on the basis of a discriminating function.

It is worth stressing that when (1) the objective is to model GO, (2) true ab-

sence data are available, and (3) sampling is unbiased and drawn from through-

out G, then the methods mentioned earlier allow estimation of the occupied 

area GO and its associated niche η(GO) directly. However, frequently, the goal 

of modeling is to estimate GA or GP, in which case use of true absence data 

will likely prevent the algorithm from doing so (see chapter 3), unless sam-

pling of absences is restricted to areas outside GP but within GM and possibly 

also within GB (see also Bahn and McGill 2007, Anderson and Raza 2010). As 

discussed in chapter 5, however, true absence data are complicated—not only 

can absence per se be diffi cult to establish, but also absence data for niche 

model development should be drawn only from relevant areas, i.e., within M.

Presence/Background Methods

Methods that utilize background data are distinct from presence/absence meth-

ods in that they do not require absence records, and are distinct from presence-

only methods in that they incorporate information on environmental variation 

across the study area (the “background”) in model development. As such, 
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presence/background methods may frequently have better discriminatory power 

than presence-only methods.

One widely used presence/background method is based on the principle of 

maximum entropy, implemented in Maxent (Phillips et al. 2006). Maxent for-

malizes the maximum entropy principle that estimated probability distribu-

tions should agree with what is known (or inferred from the environmental 

conditions where the species has been observed), but should avoid assump-

tions not supported by the data. The approach is thus to fi nd the probability 

distribution of maximum entropy—that which is most spread out, or closest to 

uniform—subject to constraints imposed by the information available regard-

ing the observed occurrence records and environmental conditions across the 

study area (Phillips et al. 2006). Maxent estimates P(X � g |Y � 1), which 

constitutes a density (i.e., if summed over all cells, it adds to one). However, 

the different outputs provided by the Maxent software are transformations from 

these raw probabilities, including a logistic output that estimates the probabil-

ity of suitable environmental conditions (or probability of occurrence, if B, A, 

and M all coincide within G; Phillips and Dudík 2008). Maxent is able to fi t 

extremely complex response curves, so we might expect that the challenges—

as with other approaches that can fi t highly complex models—are to provide 

input data that meet the assumptions of modeling (Phillips 2008) and to avoid 

overfi tting (Peterson et al. 2007c; details are provided in the remainder of this 

chapter).

Another presence/background method is Ecological Niche Factor Analysis 

(ENFA), implemented in a software package called Biomapper (Hirzel et al. 

2002), which compares the species’ distribution in E-space with conditions 

across the study area via two factors: “marginality” and “specialization.” Mar-

ginality quantifi es how the mean of the occurrence records differs from the 

mean of the entire study area along each environmental axis, while specializa-

tion quantifi es how the variance of the occurrence records relates to the vari-

ance across the study area (see fi gure 7.1F). To characterize marginality and 

specialization in multidimensional E-space, ENFA uses factor analysis (an or-

dination technique related to principal components analysis), to transform pre-

dictor variables into uncorrelated factors, specifi cally focusing on marginality 

on the fi rst axis and specialization on the second. Then, the Biomapper soft-

ware fi nds the distance to the median centroid in the space of niche factors, and 

assigns suitability scores to each pixel according to its distance to presence 

points in the transformed environmental space.

Statistical approaches like GAM and GLM can also be used when true ab-

sence data are lacking, by means of substituting either background or pseudo-

absence sampling for absence data (Elith et al. 2006). Note, however, that 
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when background samples or pseudoabsences are used in lieu of true absences, 

the estimation of P(Y � 1|X � g) requires the use of a correction term in what 

is known as “case-control sampling” (Pearce and Boyce 2006, Ward et al. 

2009). The essence of the complication lies in estimation of the occurrence 

probability P(Y � 1), which with true absences and random sampling is esti-

mated simply by the number of occurrences divided by the total sample size:

 Number of presences
 P(Y � 1) � ————————–—————————— (7.5)
 [Number of presences � Number of absences]

but that otherwise is more complex, as is explored in the remainder of this 

chapter.

Presence/Pseudoabsence Methods

Another, and indeed similar, method of dealing with the lack of true absence 

data is to resort to sampling “pseudoabsence” localities (see the preceding dis-

cussion and chapter 5). Here, “absence” information is resampled from the 

broader study area; however, these so-called pseudoabsence data are not al-

ways chosen with care, and thereby may not provide the appropriate contrasts 

necessary for rigorous model calibration. One widely applied method that uti-

lizes pseudoabsence sampling is the GA called GARP (Stockwell and Peters 

1999). Internally, the GARP algorithm itself requires absence data, but to allow 

use in the common cases where true absences are not available, the GARP 

software generates pseudoabsence records automatically from the study area. 

GARP combines three variants on climate envelopes with simple GLM methods 

in a GA framework that should—one would expect—produce a solution that 

is always as good as or better than the models that any component algorithm 

would yield. Because GARP does not yield deterministic solutions, multiple 

(100 to 10,000) runs of the algorithm are typically developed, which are then 

fi ltered based on error characteristics (Anderson et al. 2003), and summed to 

produce a consensus ordinal prediction.

Other Techniques and Multimethod Models

Numerous additional approaches have been published that do not fi t so com-

fortably into the preceding classifi cation scheme. For example, Bayesian ap-

proaches have permitted estimation of detection probabilities (Latimer et al. 

2006), in some cases incorporating the occurrence data probability tree shown 

in chapter 4 explicitly (Argáez et al. 2005). Similar methodological adaptations 

may be possible for background sampling, but the theoretical implications need 

to be taken into account in each case.

short
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In addition, some approaches produce multiple model outputs by producing 

multiple iterations of portions of the modeling process (e.g., multiple models 

with different algorithms, multiple iterations of algorithms with random in-

corporation of different types of rules), and then combining results to achieve 

single predictions (Araújo and New 2007). For example, GARP uses several 

envelope and regression methods that compete with each other in the GA frame-

work (Stockwell and Peters 1999). Another example is the BIOMOD frame-

work (Thuiller et al. 2009), which runs several algorithms (GLM, GAM, ANN, 

CART, MARS, multiple discriminant analysis, random forest, generalized 

boosting trees, and surface-range envelopes that are analogous to BIOCLIM).

When running multiple methods, it is necessary to identify a single result 

from among the different outputs. In the case of BIOMOD, one approach is to 

calculate evaluation statistics (see chapter 9) for each individual method, using 

as the fi nal result the one that performs best in the evaluation tests (Thuiller 

et al. 2003, Thuiller et al. 2009). Alternatively, results from multiple-method 

approaches may be summarized by identifying areas of agreement among 

models (Araújo et al. 2005c, Araújo et al. 2006): for example, summary results 

may include areas identifi ed as “all models predict” or “any model predicts” 

(e.g., Waltari et al. 2007). Another possibility is to create an “ensemble “ of re-

sults from different methods, alternative parameterizations of the same method, 

or multiple iterations of stochastic methods (Anderson et al. 2003), to generate 

a suitability value (Araújo and New 2007).

A risk with combining multiple methods is that good results may be made 

worse by dilution with poor results. Possible solutions include utilization of 

only models shown to be robust for the particular application under consider-

ation, combination of results from different methods only after poor results 

have been removed based on examination of evaluation statistics, or combina-

tion of model outputs via some objective weighting scheme, such as weighting 

based on evaluation statistics (Marmion et al. 2009). A second risk is that since, 

as we have argued earlier, different methods estimate rather different mathe-

matical objects (different probabilities, different transformations, member-

ship to sets, and so on) that may identify different portions of the BAM dia-

gram (GO, GO ∪ GI, A, or their respective environments), mixing the results 

of different methods may create diffi cult problems of interpretation. Although 

these considerations may not matter much if one is interested primarily in pre-

dictive ability, if the aim of the modeling exercise is in explanation, to under-

stand the ecological (niche) side of a biological problem, it may be preferable 

to use a more limited set of models with greater consistency in their internal 

workings.

short
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IMPLEMENTATION

Model calibration  is a fast-evolving area of research, with new algorithms and 

new implementations of niche models being published frequently. Conse-

quently, we provide here only a general overview of the main types of imple-

mentations that are currently available. In some cases, software tools to im-

plement methods must be requested directly from the authors, usually simply 

because time and resources have not permitted development of versions suit-

able for open distribution. However, in many cases, tools for implementing 

these methods are freely available to interested users via the Internet. Most 

techniques use software for Windows-based personal computers, but a few can 

also be used with Macintosh and other platforms (e.g., Maxent).

Many methods can be implemented using general-purpose statistical soft-

ware. For example, Thuiller et al. (2009) provided a platform for ensemble 

forecasting of species’ distributions using libraries available in the open-source 

software environment R, and Elith et al. (2008) provided R code and a tutorial 

for building niche models using BRTs. Other authors have worked in different 

computing environments: for example, Latimer et al. (2006) provided code for 

building Bayesian niche models in the WinBUGS software package.

Other methods require specialized software. For example, Maxent, GARP, 

and BIOMAPPER are all available freely in stand-alone packages. Other initia-

tives are developing software environments for implementing different methods, 

such as openModeller (Muñoz et al. 2009). Niche modeling methods have also 

been implemented within GIS software platforms—for example, BIOCLIM 

and DOMAIN models are both implemented in DIVA-GIS (Hijmans et al. 

2001), and several methods can be run within the commercial GIS packages 

IDRISI and ArcGIS (e.g., BIOCLIM). Most recently, software for computer-

intensive ensemble niche modeling has been developed (BIOENSEMBLES; 

Diniz-Filho et al. 2009), in which production of comprehensive simulations 

across initial conditions, model classes, model parameterizations, and bound-

ary conditions is automated in a high-capacity distributed (grid) processing 

environment.

MODEL CALIBRATION

In chapter 4, we defi ned model calibration as referring to the process of ad-

justing model parameters until differences between model predictions and ob-

servations meet predefi ned, algorithm-specifi c criteria. Different algorithms 

calibrate models in different ways, and diverse parameters and constants may 
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require adjusting. For example, the internal structure of an ANN must be opti-

mized (Pearson et al. 2002), CART and BRT models should be pruned to an 

optimal level of complexity (Elith et al. 2008), and an appropriate “regulariza-

tion” parameter must be set in Maxent (Phillips et al. 2006). We emphasize one 

important point: although theoretical and empirical research may have led to 

suggestion of default settings by the researchers developing the software (e.g., 

Anderson et al. 2003, Phillips et al. 2006, Phillips and Dudík 2008), it is gener-
ally poor practice to use default settings provided by software without justifi ca-
tion, testing, and exploration of these values for a particular application. It is 

not our goal here to describe calibration methods for particular methods—for 

this information, readers should consult detailed literature on individual methods 

and experiment with the effects of varying particular parameters. Rather, we 

outline three general principles of importance during model calibration: data 

splitting, variable selection, and threshold selection.

Data Splitting

A key goal of model calibration is to construct a model that fi ts well to the 

known data, but that does not overfi t in ways such that its predictive ability is 

low when presented with independent data (see chapter 4). Many of the algo-

rithms discussed earlier are able to fi t complex response curves, if allowed. A 

common goal for these methods is to select a degree of complexity that is op-

timal for balancing E
ver

 and E
val

, often achieved through an automated process 

of data splitting  within the calibration dataset and internal to the algorithm’s 

processing. If an algorithm does not carry out these steps automatically, a re-

searcher may need to “tune” settings via species-specifi c experiments.

Note that this subdivision is in addition to that which divides the data into 

calibration and evaluation sets. For example, suppose we have 500 observed 

species occurrence records. We may fi rst set aside 100 of these records to use 

for model evaluation (see chapter 9); then, of the remaining 400 records, we 

might hold out another 100 records against which the performance of the model 

will be tested for overfi tting during the calibration process. These internal eval-

uations do not constitute assessments of prediction of independent data (vali-

dation). As such, they have the potential to assess overfi tting  to noise but not to 

any biases present in the overall calibration dataset, since such biases will also 

be present in any subset of the calibration data.

To test for overfi tting to noise, several modeling methods assess model per-

formance against the held-out data at regular intervals during model calibration 

(e.g., each generation in the evolution of a GARP model). If the model be-

comes too complex and overfi t to the data being used to fi t the model, then 

model performance will be poor on the internally held-out data. This approach 
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is exemplifi ed in use of ANNs, whereby the network is calibrated on one sub-

set of the data and then tested against the held-out data at regular intervals 

(measured by the number of learning iterations) during the training process 

(Pearson et al. 2002). Although the model will perform better and better on the 

training data (i.e., f̂  will become increasingly complex, as the number of learn-

ing iterations increases), performance on the held-out data will begin to decrease 

once overfi tting begins (i.e., when model complexity becomes excessive). The 

stage at which the model performs best on the held-out data is usually inter-

preted as the f̂  with optimal complexity (fi gure 7.2). Other algorithms employ 

different strategies for avoiding overfi tting, including discarding rules with low 

performance on held-out data in GAs, the regularization parameter in Maxent, 

and others.

Data to be held out to avoid overfi tting are generally selected from the cali-

bration dataset randomly in a one-time split; for example, Pearson et al. (2002) 

held out 50% of the calibration data to assess overfi tting with ANNs, and 

GARP holds out 50% of calibration data for assessing rule predictivity (Stock-

well and Peters 1999). However, more advanced data-splitting approaches can 

offer advantages. For example, with k-fold cross validation, calibration data 

are split into k roughly equal sized subsets (k � 2), and each part is held out 

successively while the other k – 1 parts are used for model building (Elith et al. 

2008). An important advantage of this approach, particularly when sample sizes 

Figure 7.2. Illustration of data splitting to identify optimal performance in an 

artifi cial neural network model. One portion of the available data is used for model 

calibration, and the other is held out for identifying when the model becomes 

overfi t. Model performance is tested against the held-out data at regular intervals 

during training (e.g., every 100 iterations), and the iteration at which error is low-

est on the held-out data is selected as the optimal model.
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of available occurrence records are small-to-moderate, is that all calibration data 

are used at some point in the process to fi t models. Other data splitting methods 

(e.g., bootstrapping and jackknifi ng) are used more commonly in model evalu-

ation, and are therefore described in detail in chapter 9. However, similar ap-

proaches may be used during model calibration to minimize overfi tting.

Variable Selection

Different types of environmental predictor variables  have been discussed in 

detail in chapter 6. Decisions regarding which variables to use should be based 

on biological reasoning, including selecting specifi c variables known or sus-

pected to have a physiological role in limiting a species’ distribution. For 

 example, the role of hard, long-term freezes in limiting the distribution of 

 saguaro cactus (Cereus giganteus) is well known (Drezner and Garrity 2003), 

so inclusion of variables related to time below freezing temperatures would be 

particularly relevant in a model of that species. More generally, however, such 

information is often not known, or not known completely, so it can be useful to 

explore which variables, and how many variables, to include in the model dur-

ing the calibration process.

Inclusion of large numbers of environmental variables (i.e., 20 to 50) en-

ables more complex models to be built and provides more information on which 

a model can be based. However, inclusion of fewer variables (e.g., Green et al. 

2008 used only three variables in fi tting models) may be suffi cient for some 

applications, and can help to avoid overfi tting by limiting model complexity. 

Numbers of variables that should be used will also depend on the modeling 

method and on numbers of occurrence records available, with fewer variables 

warranted when fewer occurrence records are available (Fielding and Bell 

1997). Some approaches operate such that no limits exist on numbers of vari-

ables that can be input into the model, regardless of the number of known occur-

rence records; however, clearly, as large numbers of variables are considered, 

the potential for overfi tting rises dramatically (Peterson 2007b). To reduce 

overfi tting in such cases, an algorithm should include some process of balanc-

ing model complexity against predictivity (e.g., the Akaike Information Cri-

terion). For example, Maxent (Phillips et al. 2006) implements a form of regu-

larization that can exclude variables from the fi nal model (although they are 

considered in the calibration process), thus eliminating the requirement for prior 

variable selection. On the other hand, parametric statistical approaches (e.g., 

GLM, GAM) have rather fi rm requirements regarding the balance between 

numbers of occurrence records and numbers of parameters to be estimated, 

which in turn depends on the number of environmental variables included in 

the model.
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A generic approach for exploring the importance of different environmental 

variables is jackknifi ng  of the variables included in model calibration (not to be 

confused with the jackknife evaluation method described in chapter 9, from 

Pearson et al. 2007, which varies the occurrence records). In the calibration 

case, multiple models are built, each time excluding set numbers of variables 

(Peterson and Cohoon 1999). Model performance  is assessed using one of the 

evaluation measures described in chapter 9 for each replicate model, and the 

importance of different variables estimated based on comparisons of perfor-

mance with and without each variable (i.e., model performance will decrease 

markedly when variables with important unique contributions are excluded). 

Since environmental variables often are correlated with one other (chapter 6), 

interpretation of jackknife results must be undertaken with caution: jackknifi ng 

by excluding single variables (n – 1 jackknife) informs about the unique con-

tribution of that variable—if other variables are highly correlated, then the test 

may not detect the relevance of such variables, making other “n – d” jackknife 

manipulations (where d is the number of variables deleted from each iteration; 

d � 1) more informative (Shao and Wu 1989, Efron and Tibshirani 1993). This 

procedure may also include calibrating models with each variable individually 

to estimate the single contribution of that variable (fi gure 7.3; Peterson and 

Cohoon 1999). Automated jackknifi ng of environmental data is included in some 

modeling programs, including desktopGARP and Maxent.

Finally, as intimated earlier, the overall number of variables, even if they 

are independent, can produce overfi tting. In this sense, maintaining E simple, 

ecologically meaningful, and not too highly dimensional  becomes critical. Pro-

cedures for reduction of numbers of variables, such as principal components 

analysis or other ordination techniques, can prove useful for correlated vari-

ables (see chapter 6). These steps offer the double benefi t of reducing numbers of 

variables and producing uncorrelated variables that will cause fewer problems 

Figure 7.3. Illustration of jackknifi ng as an approach for exploring the impor-

tance of different environmental variables in model calibration. Multiple models 

are built (in this case, using Maxent), each time excluding set numbers of variables 

to observe the effect of their exclusion from the model calibration process. In this 

illustration, results of two jackknifi ng analyses are shown for each of two South 

American bird species (Glyphorynchus spirurus, Adelomyia melanogenys). The 

dark bar for each variable shows its contribution (in terms of training gain) in 

single-variable analyses; the lighter-gray bar shows the training gain of models 

excluding that variable; the bar at the bottom shows the training gain of a model 

including all variables. Note that variable importance would be maximal if its 

single-variable-model gain were high and omit-one-model gain were low (each 

relative to experiments with other variables). From Buermann et al. (2008).

07peterson.097_137.indd   11707peterson.097_137.indd   117 6/8/11   8:46 PM6/8/11   8:46 PM



1 1 8  C H A P T E R  7

for modeling algorithms sensitive to nonindependent environmental variables. 

The cost associated with this step, however, is that the intuitive interpretability 

of the resulting (rotated) axes may be less than that of the original variables.

Setting Thresholds

Many modeling algorithms produce a continuous surface (e.g., probability val-

ues or relative suitability scores) as output, rather than binary predictions of 

presence and absence. It is often useful to convert continuous or ordinal model 

predictions to binary ones by choosing a threshold  value (known commonly as 

a “threshold of occurrence,” denoted by u in chapter 4), at or above which the 

environment is predicted as suitable for the species (i.e., within GP or GA, de-

pending on the particular absence, background, or pseudoabsence data). For in-

stance, thresholding may be necessary if one is combining models of multiple 

species to yield predictions of species richness (e.g., Graham and Hijmans 

2006; see chapter 12), or if the goal is to identify specifi c sites to be surveyed 

for species discovery (e.g., Pearson et al. 2007; see chapter 11) or selection of 

important areas for conservation action (e.g., Araújo and Williams 2000; see 

chapter 12). Selecting an appropriate threshold affects results considerably: as 

the threshold increases (i.e., imposing a more restrictive condition on suitabil-

ity), the proportion of E estimated as being suitable for the species decreases, 

as does the proportional area predicted as suitable in G.

Choice of threshold is therefore determined in large part by the proposed 

application of the model (Peterson 2006c). For example, if the aim is to iden-

tify areas within which disturbance may impact a species negatively (e.g., as part 

of an environmental impact assessment), then a low threshold may be chosen 

so as to identify a larger area of potentially suitable (and therefore, potentially 

vulnerable) habitat. In contrast, if the goal is to identify areas for conservation 

of important populations or potential reintroduction sites for an endangered 

species, then a relatively high threshold would be more appropriate, since this 

reduces the risk of selecting unsuitable sites; at least for some algorithms, such 

a step may identify the best sites.

Numerous methods have been employed for selecting thresholds for niche 

models (table 7.1). The simplest approach is by selecting an arbitrary value 

(e.g., 0.5, for outputs varying from 0 to 1), but this approach is very subjective, 

may lack ecological reasoning, assumes a fi xed threshold when different spe-

cies might require different thresholds and, not surprisingly, has been shown 

to perform poorly (Liu et al. 2005, Freeman and Moisen 2008). More objective 

methods, which can be applied to any algorithm producing nonbinary output, 

are frequently based on criteria applied during model calibration (i.e., based 

on the calibration dataset). As such, we include this topic in this chapter, even 
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though some of the evaluation statistics used in setting thresholds (e.g., Kappa) 

are described in detail in chapter 9; the reader may need to refer to that chapter 

for a more complete understanding of the methods. Options for selecting 

thresholds are limited by types of data that are available (i.e., presence-only 

versus presence/absence), and we discuss these separately later.

Table 7.1. Some published methods for setting thresholds of occurrence, to convert 

continuous or ordinal model output to binary predictions of “present” and “absent.”

  Occurrence
Method Defi nition data typeb Example reference(s)

Fixed value  An arbitrary fi xed value  None needed Manel et al. 1999; 
(e.g., probability � 0.5).  Robertson et al. 2004

Least training The lowest predicted  Presence-only Pearson et al. 2007; 
presence  value corresponding to   Phillips et al. 2006

an occurrence record. 

Fixed sensitivitya  The threshold at which an  Presence-only Pearson et al. 2004
arbitrary fi xed sensitivity 
is reached (e.g., 0.95, 
meaning that 95% of 
training occurrence 
localities will be included 
in the prediction).

Sensitivity-specifi citya The threshold at which  Presence/absence Pearson et al. 2004
equality  sensitivity and specifi city 

are equal.

Sensitivity-specifi city  The sum of sensitivity and Presence/absence Manel et al. 2001
sum maximization specifi city is maximized.

Maximize Kappaa  The threshold at which  Presence/absence Huntley et al. 1995
Cohen’s Kappa statistic 
is maximized.

Average probability/ The mean value across None needed Cramer 2003
suitability model output.

Equal prevalence  Species’ prevalence (the  Presence only Cramer 2003
proportion of presences 
relative to the number of 
sites) is maintained the 
same in the prediction as 
in the calibration data.

Note that the least training presence threshold approach is a particular implementation of fi xed 

sensitivity.
a Sensitivity is the proportion of presences correctly predicted; specifi city is the proportion of 

absences correctly predicted; Kappa is a measure of model performance that refl ects correct pre-

diction of both presence and absence records. These indices are described in detail in chapter 9.
b Species occurrence data required to set the threshold. Note that methods suitable for presence-

only data can also be applied to presence/absence data, but not vice versa. Based in part on Liu et 

al. (2005).
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Presence/absence thresholding. When using presence/absence data, a simple 

approach is to balance numbers of observed presences and absences that are 

correctly predicted (although all of the cautions mentioned earlier regarding 

absence data in niche modeling apply here as well). Thus, the threshold is ad-

justed so that the number of observed presences incorrectly predicted (i.e., that 

fall below the threshold) is balanced against the number of observed absences 

that are incorrectly predicted (i.e., that fall at or above the threshold). Methods 

based on such data usually assess model performance across the range of pos-

sible thresholds (e.g., for a model that predicts probability of occurrence, per-

formance could be assessed at thresholds at increments of 0.01 between 0 and 

1), selecting the threshold that maximizes performance according to the quan-

titative measure employed (e.g., number of records incorrectly predicted).

It is common to calculate the Kappa statistic (which has high values when 

both presences and absences are predicted correctly; see chapter 9) to assess 

performance based on the calibration data (or, in some cases, an internally 

held-out subset of the calibration data) and then to select the threshold at which 

the statistic is maximized (commonly termed “maximizing Kappa”; fi gure 7.4). 

A similar alternative is to select the threshold at which the proportion of pres-

ences correctly predicted and the proportion of absences correctly predicted 

coincide (more formally, this approach means balancing sensitivity and speci-

fi city; see chapter 9 and fi gure 7.4). We note, however, that the cautions ex-

pressed earlier regarding what quantity is estimated by each method may also 

apply to this situation, and (most critically) also that all of these methods as-

sume a symmetrical loss function (i.e., they give equal weight to omission and 

commission errors).

Liu et al. (2005) tested 12 methods for setting thresholds using presence/

absence data for two European plant species. Based on four evaluation statis-

tics (sensitivity, specifi city, Kappa, and overall accuracy; see chapter 9), they 

concluded that the best methods were maximizing the sum of sensitivity and 

specifi city, using the average probability/suitability score, and setting equal 

proportional area predicted (termed prevalence) between calibration data and 

the prediction. In a similar analysis using presence/absence records for 13 tree 

species in western North America, Freeman and Moisen (2008) also found 

support for thresholds based on equal prevalence between the calibration data 

and the prediction, and for those based on maximizing Kappa.

Presence-only thresholding. Clearly, approaches using presence/absence data 

depend rather critically on the absence information, so it is important to con-

sider what can be done in the frequent case in which such data are lacking. 

Because background and pseudoabsence samples may suffer from inclusion of 
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grid pixels falling within GP, leading to apparent commission error (Anderson 

et al. 2003), strictly speaking, methods that integrate any estimate of commis-

sion cannot be used when true absence data are lacking, at least without modi-

fying the loss statement and interpretation (see chapter 4). Fortunately, a few 

methods can be applied to presence-only data. A common approach is to use 

the lowest suitability value associated with a calibration presence record, termed 

the “least training presence threshold” by Pearson et al. (2007). This approach 

assumes that presences of the species are restricted to sites at least as suitable as 

those at which the species has been observed so far, and that sites at or above that 

threshold are indeed suitable for the species. The approach therefore identifi es 

Figure 7.4. Illustration of approaches to selecting a threshold of occurrence u 

based on presence/absence data. Top: The Kappa statistic, which includes a com-

bination of information on omission and commission error (see chapter 9), is cal-

culated for each possible threshold (in this case, shown across the range 0 to 1), 

and the threshold at which Kappa is maximized is chosen. Bottom: Proportions 

correctly predicted for presence and absence data are calculated over all thresh-

olds, and the point at which they cross indicates the optimal threshold. Note that 

both of these approaches weight omission and commission errors equally, and as 

such assume a symmetric loss function.
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a minimum area in G within which the species can occur, while ensuring that 

no known presence records are incorrectly predicted. This approach can be ei-

ther overly restrictive (e.g., when few occurrence records are available) or overly 

broad (e.g., when some records are incorrectly identifi ed or georeferenced, de-

rived from sink populations, or associated with factors favorable to suitability 

but not included in the environmental dataset). Because of the possibility of 

overly broad predictions, an alternative is to choose a threshold such that a 

certain percentage of presence records are included (e.g., 95% of presences 

included in the prediction). This method is less sensitive to outliers than the 

lowest presence threshold, but errors of omission accumulate as a consequence 

(i.e., some presences are incorrectly predicted; Pearson et al. 2007). These ap-

proaches have the advantage of weighting errors of omission and commission, 

and thereby fi t well with our understanding of the relative importance of pres-

ence versus absence data.

In addition to these thresholding rules based on omission  of calibration data 

(that can be implemented with many modeling approaches), some techniques 

provide theoretical expectations by which thresholds can be chosen. For ex-

ample, with the cumulative output from Maxent (which ranges from 0 to 100), 

under certain assumptions, the value of the prediction equals the expected 

omission rate for independent samples of occurrence records for the species; 

hence, the evaluation omission rate obtained by applying a given threshold, e.g., 

10 out of 100 can be compared to the theoretical expectation (Phillips et al. 

2006). Similarly, the logistic output of Maxent ranges from 0 to 1 and provides 

the probability of suitable conditions, or probability of occurrence if both 

model calibration and model evaluation occur in a study region where B and M 

do not affect the species’ distribution. Here, similar to presence/absence thresh-

olding with GAM/GLM, etc. (techniques that produce estimates of probability 

of occurrence), a threshold can be set (0.5) that should, in theory, minimize both 

omission and commission rates. These probabilistic interpretations of Maxent 

outputs, however, have not gone without criticism in light of overfi tting when 

model assumptions are violated, as will frequently be the case (Peterson et al. 

2008a).

Finally, we note that presence-only approaches to setting thresholds may 

be justifi ed even in cases when absence records are available. Indeed, it may be 

argued that maximizing numbers of correctly predicted observed presences is 

more important than is minimizing numbers of incorrectly predicted absences. 

This consideration relates to the concept of “false absences” discussed in chap-

ter 5: if some absences are likely to be recorded in environments that are none-

theless suitable (owing to detection probabilities �1, environmental heteroge-

neity within coarse-resolution grid cells, or uncertain estimation of M as the 
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area of analysis), it is inappropriate to give them the same weight as observed 

presences. This issue is central to the theory behind model evaluation (see dis-

cussion of apparent commission error, chapter 9), but it is also relevant to se-

lecting a threshold of occurrence. This issue may be addressed by modifying 

the loss function (see chapter 4): for example, the “best subsets” implemen-

tation of the GARP algorithm allocates unequal weights to commission and 

omission errors (Anderson et al. 2003); similarly, recent proposals for modi-

fi ed ROC evaluation statistics weight different errors differentially (Peterson 

et al. 2008a).

MODEL COMPLEXITY AND OVERFITTING

Model complexity  refers to the degree of fl exibility in the function f̂  to conform 

to calibration data, which minimizes E
ver

. When models show close fi t to cali-

bration data, but are less able to predict independent or even semi-independent 

evaluation data, that is, E
ver

 is small but E
val

 (validation error; see chapter 4) is 

large, this situation is formally termed “overfi tting,” providing a quantitative 

defi nition of a term already used at several points in this book .

It is generally true (Hastie et al. 2001) that too little complexity induces 

both E
ver

 and E
val

 to be large, whereas more complexity successively produces 

smaller E
ver

, and initially also reduces E
val

. However, increasing complexity 

still further causes E
val

 to increase again (see fi gure 7.5), which is precisely the 

lack of generality caused by overfi tting models. Overfi tting occurs because 

models are overparameterized (for example, in the case of niche modeling, too 

many variables are included in the model or too strong a weight is assigned to 

them). This condition is not caused by the data, but rather by the methods used 

to produce the model. Many modeling methods do not allow explicit control of 

the degree of model complexity, except for the number of variables; others can 

be calibrated to yield optimum degrees of complexity (see the section “Data 

Splitting” earlier). Because almost all uses of niche models require some de-

gree of predictive ability (Peterson 2006c), eliminating, minimizing, or at least 

being fully aware of overfi tting is of great importance.

A useful way to think about model complexity and overfi tting is as regards 

response curves  (fi gure 7.5). Response curves describe probabilities of presence 

for a species across the range of values of an environmental variable (or in some 

cases, for combinations of variables, such as the product of two variables). 

Here, species occurrence is the dependent variable, and the environmental vari-

able is the independent variable. The task for the modeling algorithm is thus 

to estimate response curves for each of the environmental variables (of course, 
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Figure 7.5. Illustrations of model complexity and its relationship to environ-

mental dimensions and geography. Top: Visualization of three response curves 

along a single environmental dimension—dashed line � overly simple response 

curve; dark line � probable biologically realistic response curve; gray line � 

overly complex response curve. Bottom: The same three response curves (overly 

simple, biologically realistic, overly complex) visualized in a two-dimensional 

E-space and G-space, showing their likely tendencies to generalize excessively or 

to specify too much.
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taking into account any interactions between variables, as necessary). Figure 

7.5 contrasts three hypothetical response curves: one that offers a biologically 

realistic situation, another that is a highly complex model and probably unlikely 

to represent a realistic response, and fi nally an extremely simple response curve 

also unlikely to be biologically realistic or to have much predictive power.

Niche models generally combine response curves across multiple predictor 

variables in some way, which can range from very simple to complex. Figure 

7.5 illustrates models with differing degrees of complexity in two-dimensional 

E-space (models are presented as binary predictions for simplicity). A more 

complex model can fi t more complex niche shapes, whereas a simpler model 

fi ts less complex shapes but may be more likely to include parts of E-space that 

are not within the species’ true ecological niche. A third model provides an 

intermediate level of complexity. When projected into G-space, the more com-

plex model predicts a smaller area that fi ts more closely to known occurrences, 

while the simpler model predicts a broader area, thus including more areas not 

known to be occupied.

This trade-off between model complexity and simplicity is a key part of 

model calibration. If the model is overly complex, it is likely to make predic-

tions that fi t too closely to known occurrences and that have poor predictive 

ability for unsampled cells; in contrast, a model that is too simple may not 

capture the true ecological complexity, and may therefore underfi t the niche, 

and show poor performance, but generally in the direction of predicting too 

broad of an area. We discuss these issues in more detail later in this chapter, 

and we describe how to test for over- and underfi tting in chapter 9.

STUDY REGION EXTENT AND RESOLUTION REVISITED

As mentioned several times earlier in this book, selection of the appropriate 

region for analysis represents a critical step in the modeling process. A species’ 

ecological niche may appear highly specialized at a global extent  but it may be 

much less specialized within regions close to where it occurs. For example, 

although a species might appear restricted completely to tallgrass prairie when 

viewed at broad extents, a closer view may reveal that it occurs broadly into 

nearby land cover types. Changing the extent (i.e., the geographic limits) of the 

study area G can thus have a substantial impact on model predictions (Hirzel 

et al. 2002).

With presence/absence, presence/background, and presence/pseudoabsence 

modeling techniques (for presence-only techniques, these concerns do not 

apply), the region for model calibration should not include areas where the 
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species is absent for reasons other than conditions unsuitable in terms of the 

environmental variables used in modeling (Anderson and Raza 2010). Specifi -

cally, model calibration  should be focused over the region within M in the BAM 

diagram, as absence (or background or pseudoabsence) information in this area 

will be maximally meaningful and not misleading (see detailed treatment in 

Barve et al. 2011). In fact, ideally, the comparisons in model calibration would 

also avoid drawing pixels from areas from which the species is absent for biotic 

reasons, although these areas may be yet more diffi cult to identify.

Violation of these conditions hinders successful calibration of f̂  because 

“absence” information potentially corresponding to suitable environments can 

provide false negative signals. For example, the model may recognize spurious 

environmental differences between a region that a species actually inhabits 

versus another region that it could inhabit but does not because of a geographic 

barrier (i.e., outside M). This problem does not represent overfi tting to noise, 

but rather to a bias: incomplete representation of environments in the occur-

rence dataset, namely the lack of positive occurrence records from all regions 

holding suitable conditions, an explicit or implicit assumption of many, if not 

all, presence/background modeling techniques.

Clearly, detailed information regarding factors producing such biases will 

generally be diffi cult to obtain or estimate. However, explicit statement of as-

sumptions regarding M constitutes a concrete step forward, outlining why the 

chosen study region was delimited as it was. Some situations may call for hy-

potheses of M based on the current dispersal capabilities of the species, whereas 

others may attempt to estimate likely past distributions (e.g., during the Pleis-

tocene). (It should be noted that M must also be adjusted by the spatial distri-

bution of sampling, as was clear in fi gure 5.1: this distribution constrains the 

spatial possibilities of occurrence similarly to the action of M.) Future research 

is necessary to develop operational guidelines for selecting study regions based 

on these ideas (Anderson and Raza 2010, Barve et al. 2011).

MODEL EXTRAPOLATION AND TRANSFERABILITY

We distinguish carefully between extrapolation  and transfer ability. Extrapola-

tion refers to use of a model to predict into areas presenting environmental 

values beyond the environmental range of the area on which the model was 

calibrated (Williams and Jackson 2007). For example, suppose that a niche 

model was calibrated using occurrence records sampled from a region with 

temperatures ranging 10–20°C. If the model is used to predict suitable condi-

tions across a different region (or under a different climate scenario), where 
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temperatures reach 25°C, then the model must extrapolate. Because the model 

has no prior information regarding the probability of the species being present 

at 25°C, the prediction into such conditions is likely to be highly uncertain 

(Thuiller et al. 2004c, Pearson et al. 2006). Examples of the perils of extrapo-

lation are illustrated in fi gure 7.6. Given the truncated response curves often 

experienced in current datasets, extrapolation should be approached with much 

caution, since the correlative niche-modeling approach does not necessarily 

identify mechanistic, process-based relationships between species’ occurrence 

and the environment, which would be more likely to hold true under novel 

Figure 7.6. Hypothetical example illustrating the perils of extrapolation of niche 

model suitability predictions beyond the environmental range of the calibration 

data (in gray). In the area of extrapolation (i.e., environmental conditions not rep-

resented in the calibration region G), the trend characterized in the calibration 

range could continue rising, level off, or decline, but no information relevant to this 

point is available. Such situations are referred to as “truncated response curves.”
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circumstances (Kearney and Porter 2004). It is thus essential to understand the 

assumptions made when extrapolation occurs: extrapolation is particularly risky 

in situations in which response curves are high or increasing where truncated 

(Anderson and Raza 2010), such as will frequently be the case when range 

limits are imposed externally (e.g., a coastline for a terrestrial species) and not 

related to A.

One approach that has been explored to tackle this problem is to calibrate 

models based on study regions that incorporate the full range of environments 

of interest. For example, in a study of climate change impacts on plants in 

Britain, Pearson et al. (2002) calibrated niche models at the extent of all of 

Europe to incorporate a broad range of environmental conditions, and then 

projected niches onto future climate scenarios only in the British Isles. This 

approach minimized the risk that, when applied to future climate change sce-

narios, the model would be used to extrapolate (in E) outside the environmen-

tal range of the calibration data. This approach shows promise, but is subject to 

the limitations described in the previous section on selecting the study region.

Transferability is in and of itself a simpler and more tractable challenge—it 

refers to the idea of applying a model developed on one landscape to another 

landscape or to another time period in the same area (Araújo and Rahbek 2006, 

Randin et al. 2006, Peterson et al. 2007c). Here, the Hutchinsonian Duality  of 

linked spaces that we have discussed in chapters 2 and 3 becomes key: the 

model developed in E can be applied to any space G that is characterized in 

the same dimensions (environmental variables). Problems can arise if the two 

G spaces differ in their associated E spaces, which could lead to truncated re-

sponse curves, and the need for extrapolation, as mentioned earlier. The key 

challenge in achieving high transferability is really one of developing models 

that are not overfi t in the calibration region and that treat extrapolation with 

care when necessary.

DIFFERENCES AMONG METHODS AND

SELECTION OF “BEST” MODELS

We have seen that several similarities exist between ecological niche modeling 

and species distribution modeling, as well as many differences. In other words, 

the nature of the f being modeled may correspond to different areas in the BAM 

diagram, and/or their corresponding environments. Put much more simply, in 

our view, species distribution modeling will always involve ecological niche 

modeling, but must also take on additional challenges, such as incorporating 

spatial processes of dispersal and its limitation.
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We have also discussed a broad diversity of alternative modeling methods in 

this chapter, which can produce rather contrasting forms of f̂  functions, de-

scribed by several different probabilities, suitability indices, or memberships to 

sets. In addition, different kinds of data are used to perform these analyses. It 

is important, therefore, to consider the degree to which these different meth-

ods, with different objectives, and based on different data types, yield different 

results.

Numerous studies have demonstrated that different modeling approaches 

have the potential to yield substantially different predictions (Loiselle et al. 

2003, Thuiller 2003, Brotons et al. 2004, Segurado and Araújo 2004, Thuiller 

2004, Araújo et al. 2005b, Elith et al. 2006, Pearson et al. 2006). For instance, 

Pearson et al. (2006) modeled plants of the family Proteaceae in the Cape Re-

gion of South Africa, and found pronounced differences among model predic-

tions regarding change in range size under future climate scenarios, with pre-

dicted changes differing in both direction and magnitude among algorithms (e.g., 

from 92% reduction to 322% range increase for a single species). In another 

study, Loiselle et al. (2003) demonstrated distinct results when alternative meth-

ods were used to identify priority sites for conservation prioritization.

A particularly extensive comparison of methods was provided by Elith et 

al. (2006), who compared 16 modeling methods using 226 species across six 

regions of the world. For each species, two sets of occurrence data were col-

lated: (1) presence-only records from unplanned surveys or incidental records 

(i.e., the sort of data typically obtained from data associated with natural his-

tory museum and herbarium specimens); and (2) presence/absence records de-

rived from planned surveys of the same landscapes. The former data were used 

for model calibration, while the latter were used for model evaluation, ostensi-

bly to provide an optimal evaluation of model performance. Given the lack of 

absence records for model calibration, methods requiring some form of ab-

sence information were implemented using presence/background or presence/

pseudoabsence data. Elith et al. (2006) concluded that the “best” models were 

those able to fi t highly complex responses, such as the machine-learning meth-

ods Maxent and BRT. Subsequent publications have detailed “experimental” 

manipulations that were designed to clarify details of robustness to sample 

size, positional error, grid resolution, etc. (Graham et al. 2007, Guisan et al. 

2007, Wisz et al. 2008); results again were interpreted as revealing clear differ-

ences in performance among methods (fi gure 7.7). However, subsequent pub-

lications have pointed out weaknesses of these studies, particularly regarding 

techniques for model validation, which favored certain model types over others 

for artifactual reasons, and not based on real differences in performance (see 

chapter 9; e.g., Peterson et al. 2008a).
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Given that different modeling methods can give different results, selection 

of an appropriate method or methods is crucial, if diffi cult. Identifying meth-

ods that are generically “best” is problematic since the approach used to evalu-

ate model quality should depend on the aim of the modeling (Peterson 2006c). 

For example, Elith et al. (2006) evaluated the ability of methods to predict spe-

cies’ occupied areas (GO) via statistical tests that reward models for classifying 

both presences and absences correctly, when different weights should be ac-

corded to each. What is more, since the evaluation data were drawn from the 

same geographic area as the calibration data, and were therefore spatially auto-

correlated, models able to fi t highly complex response curves could fi t closely 

to calibration data and were thus more likely to yield particularly good evalua-

tion statistics. The spatial autocorrelation between calibration and evaluation 

data certainly compromises the independence of the two datasets (see chapter 9).

Figure 7.7. Summary of results of comparisons of niche modeling methods by 

Elith et al. (2006), who compared 16 modeling methods using 226 species across 

six regions of the world. Model performance is summarized via two measures 

(correlations between predictions and observations, COR, and the area under the 

curve of the receiver operating characteristic plot, AUC). In the lower-left portion 

of the fi gure are poorly performing methods, and in the upper-right portion of the 

fi gure are better performers. See text for detailed discussion of the implications of 

this fi gure, which is derived from Elith et al. (2006).
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In contrast, Pearson et al. (2007) assessed predictive performance of differ-

ent modeling methods based on ability to predict only presence records, argu-

ing that the purpose of the modeling was to identify abiotically suitable areas 

(GA, and hence also EA). In this case, use of absence data in assessing which 

model is “best” is inappropriate, because sites classifi ed as absent may in fact 

be environmentally suitable but outside of M and/or B, and thus in truth part of 

GA and EA. We will return to this discussion in chapter 9, when describing the 

merits and limitations of different evaluation strategies. The important point is 

that identifying a best method is in no way straightforward, and that compara-

tive evaluations published to date have results that are far from defi nitive.

CHARACTERIZING ECOLOGICAL NICHES

We have focused on ecological niches that can be defi ned as subsets of an en-

vironmental space that is defi ned by noninteractive (unlinked) variables, and 

we have described several approaches to estimating ecological niches based on 

known occurrences of species across landscapes. These “niche models,” how-

ever, are generally defi ned in multivariate spaces that are complex and irregular 

(see fi gure 2.2). This complexity obfuscates efforts to visualize niche models 

effectively. Therefore, it is necessary to describe strategies for characterizing 

ecological niches in ways that not only allow visualization, but also permit 

comparisons, defi nition of quantitative measures, etc.

We emphasize that Grinnellian niches are defi ned in relatively coarse- 

resolution scenopoetic environmental dimensions, so we avoid much of the 

complexity and intractability of bionomic variables and interactions with other 

species, which have long plagued efforts to characterize Eltonian niches. In 

fact, one of the most powerful advantages of Grinnellian niches is that their 

straightforward and operational defi nition in terms of subsets of multivariate 

spaces allows a number of well-known quantitative methods to be used to ex-

plore and analyze them. Grinnellian niches can be characterized by their posi-

tion, size, and shape (Jackson and Overpeck 2000), as we develop in the next 

several paragraphs.

Much of the early efforts to characterize niches were developed in the 

1970s, beginning with attempts to fi nd measures of “niche width” or “niche 

breadth” for resource or habitat utilization. Most of these early papers belong 

to the concept of niche that we have called “Eltonian,” which is focused on 

community-ecology problems and mostly uses consumable resources as niche 

variables. Nonetheless, many of the original ideas can be applied directly to a 

Grinnellian framework.

07peterson.097_137.indd   13107peterson.097_137.indd   131 6/8/11   8:46 PM6/8/11   8:46 PM



1 3 2  C H A P T E R  7

In the early literature, niche measures were mostly measures of spread or 

variance along single axes (Levins 1968, Colwell and Futuyma 1971, Cody 

1974), but soon the ideas were generalized to several variables, sometimes in 

an entirely theoretical way (Yoshiyama and Roughgarden 1977). However, a 

few pioneering papers (Green 1971, James 1971) began characterizing niches 

using multivariate techniques on realistic environmental datasets. These fi rst 

steps were followed later by many more, examples of which are Dueser and 

Shuggart (1979), Rotenberry and Wiens (1980), Carnes and Slade (1982), Aus-

tin (1985), and Austin et al. (1990). Most modern literature on niche character-

ization is rooted fi rmly in the multivariate mathematics of ordination methods 

(Legendre and Legendre 1998), which is the philosophy we will follow here.

Several problems arise when trying to characterize niches in an E-space of 

ν variables. Two technical challenges immediately become apparent: (1) many 

of the variables are correlated, and (2) their units and ranges are likely to be 

distinct. It has been customary since the beginnings of multivariate niche char-

acterization (Green 1971, Carnes and Slade 1982) to deal with these challenges 

via standardization of variables, followed by dimensionality reduction by means 

of factor analysis or principal component analysis (PCA). In z-standardization, 

each environmental value has the mean over all combinations subtracted, and 

the resulting quantity is then divided by the standard deviation, producing stan-

dard normal variables with mean of zero and variance of unity. This procedure 

has the advantage of scaling all variables to a comparable range of values, but 

can distort the fact that some variables are by nature distributed more narrowly 

than others (Pielou 1984, Legendre and Legendre 1998).

The challenge of removing redundancy among environmental variables is 

also nontrivial. Although some have argued that niche exploration should be 

performed in spaces of thousands of dimensions (Stockwell 2006), as discussed 

in chapter 6, most of these “dimensions” are highly collinear, so the true num-

ber of environmental dimensions in which niches can be characterized is ef-

fectively much smaller (Peterson 2007b). Two general classes of approaches 

are available to remedy this problem: (1) factor analysis or other dimensional-

reduction manipulations can be used to produce combinations of original vari-

ables that summarize environmental variation along fewer and simpler axes; 

or (2) correlation analyses can be used to detect highly redundant variables 

and eliminate repetitive ones. Once again, each approach may have advan-

tages and disadvantages. The dimensional reduction approach loses the ease of 

interpretability of the original raw environmental dimensions, and reduces the 

predictive ability of models because the synthetic variables generated with the 

process of dimensionality reduction (e.g., by generating factors or components 

that are linear combinations of sets of covarying variables) may not maintain 
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the same correlation (or covariation) structure in other times or regions. The 

variable reduction approach, in contrast, requires careful thought in selection 

of variables so as not to lose interpretability.

Selecting one method or another of standardization, and deciding whether 

to reduce the dimensionality of the space, depends to some degree on the spe-

cifi c problem, and we will not elaborate further on this topic. For simplicity, in 

what follows we assume that the niche variables have been z-standardized, and 

that principal component analysis was performed on the resulting data.

We begin then with a matrix Z of ν columns (v equals the number of prin-

cipal components retained) and n rows (one for each of the cells in the geo-

graphic grid; we assume that every geographic cell has been uniquely charac-

terized environmentally) that implicitly or explicitly defi ne M. In other words, 

the rows of Z are the elements of η(M), effectively the pool of environments 

that the species has experienced and may or may not fi nd suitable. The model-

ing algorithm then provides the subset of η(M) that is hypothesized to be suit-

able for the species to maintain populations: N̂ � η(GP), assuming here and 

throughout this section a confi guration of the BAM diagram in which B does 

not reduce GP—i.e., that the Eltonian Noise Hypothesis is true. This niche cor-

responds to a certain subset of rows of Z, and we need ways to characterize it.

Let N̂ be an estimated niche (fi gure 7.8), obtained by any of the methods 

described in chapter 7. The simplest way of characterizing N̂ is by the number 

of its elements (its cardinality), denoted by bars |N̂|, and that we call its size. 

An appealing feature of this measure is that if the geographic cells are uniquely 

described by their scenopoetic variables, then |N̂| � |η–1(N̂) |. In words, the 

geographic projection of the niche equals its size. On the other hand, this mea-

sure does not tell us anything about the position or shape of N̂ in the E-space, 

or about its shape.

A very direct way of expressing the position of N̂ in the ν-dimensional 

E-space is by the centroid of its elements. In fi gure 7.9, we display several typi-

cal estimated Grinnellian niches. It is important to notice their very irregular 

shapes (Austin et al. 1990); as a result, centroids of niches may not be very 

informative. For example, a generalist and a specialist may have identical cen-

troids but vastly different niches, and this phenomenon would not be detectable 

via centroid-based measures. Thus, measures of shapes of niches are also 

needed. Models of the entire surface of response of populations to environmen-

tal variables are possible (Austin et al. 1990).

These niche characterizations can be very precise, but are complicated and 

diffi cult to compare. In a simpler approach, it is possible to measure the vari-

ance along each of the environmental axes, as might be produced by a principal 

components analysis or discriminant function analysis of niche conditions 
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(Colwell and Futuyma 1971, Green 1971, Carnes and Slade 1982), and then 

take their average. This measure summarizes how spread out the niche is in the 

dimensions of E-space. It should be remembered that the average of the vari-

ances of any multidimensional cloud of points remains the same after a rigid 

rotation around its centroid (Legendre and Legendre 1998), which means that 

the average variance is a consistent measure of the shape of the niche cloud, 

Figure 7.8. Illustration of environmental combinations identifi ed as belonging to 

the niche of a hypothetical species (shown as larger symbols in black), as com-

pared with the remaining combinations present in the broader study area (smaller 

symbols), depicted in three standardized environmental dimensions. The ellipse 

shows the niche of the species.

–0.4

–0.2

0.0

0.2

0.4

E1

–0.2

0.0

0.2

0.4

E2

–0.2

–0.1

0.0

0.1

0.2

E3

07peterson.097_137.indd   13407peterson.097_137.indd   134 6/8/11   8:46 PM6/8/11   8:46 PM



M O D E L I N G  E C O L O G I C A L  N I C H E S  1 3 5

not affected by the choice of reference frame (as in comparisons of raw versus 

principal components-rotated niche clouds).

Given the matrix Z, the number of elements of a niche, its centroid, and the 

average of its variances are all absolute measures, relative to Z only in the 

sense that it defi nes the environmental space of discourse. However, one needs 

to defi ne the distribution of habitable environments for a species with respect 

to the availability of environments across the landscape of interest. Careful 

defi nition of this landscape as equivalent to M, the area accessible to the spe-

cies via dispersal, is important (Basille et al. 2008). It has long been recognized 

that defi ning a universe of reference in niche measurements is a fundamental 

challenge (Colwell and Futuyma 1971). The reasoning needed to defi ne M is 

obviously species-dependent, and constitutes a frontier area in the modeling 

of distributions (treated in detail in Barve et al. 2011). However, many math-

ematical techniques related to ecological niche modeling require specifi cation 

of a reference environmental space, which serves to underline the importance 

Figure 7.9. Illustration of estimated niches for three species of orioles (Icterus 

spp.). The environmental space consists of the fi rst three principal components of 

the climatic space of the Western Hemisphere (spatial resolution 5′). Black crosses 

� Icterus chrysocephalus; gray squares � I. auratus; open circles � I. galbula.
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of facing this diffi cult challenge. This is the case, for example, for Ecological 

Niche Factor Analysis (Hirzel et al. 2002); this technique, using factor analysis 

methods, describes the niche by a marginality factor, which is the distance of 

the centroid of the niche to the global centroid (the global centroid represents 

the average conditions in the dispersal-available region), and then by calcu-

lating successive specialization factors orthogonal to the marginality vector (a 

vector joining the global centroid to the centroid of the niche) that describe the 

ratios of variance of niche dimensions to the global variance in successively 

lower-dimensional spaces. This method can be used both to predict areas of 

suitable habitat and most importantly to answer the question “what does the 

organism look for?” (Basille et al. 2008); it characterizes the niche in terms 

explicitly relative to the environments that are regarded as available, that is, M.

In a related methodology that also requires explicit defi nition of an avail-

ability zone, Doledec et al. (2000) characterizes a niche by its marginality, 

measuring the maximum departure of the centroid of the niche from the global 

centroid, and by a decomposition of the total “inertia” of the niche N̂, in two 

“tolerances” that represent niche breadth in two orthogonal subspaces of Z. 

Inertias are measures of how apart and how scattered points in the niche are 

respective to the global centroid. This method has been applied to address the 

question of niche separation of a suite of species (Doledec et al. 2000).

It is necessary to mention briefl y how characterization methods can be ap-

plied to comparison of several niches. In principle, it would be possible to 

compare two or more niches by any of a number of multivariate techniques, 

like discriminant function analysis or multiple analysis of variance (Green 

1971, Dueser and Shuggart 1979), but the very non-normal and spatially auto-

correlated nature of most estimated niches suggests the need to use nonpara-

metric techniques, like versions of MANOVA (Anderson 2001), inertia analy-

sis (Doledec et al. 2000, Dray et al. 2003, Broennimann et al. 2007), or ad hoc 

methods that calculate signifi cance by randomization (Warren et al. 2008). 

Given that estimated niches may be composed of thousands of data points, 

estimation of signifi cant differences via randomization may be extremely com-

putationally intensive, and not every existing method or software package can 

cope with realistic datasets.

We see then that characterization and statistical treatment of Grinnellian 

niches has roots in relatively old literature, and that a number of methodologies 

capable of dealing with the different challenges of this task are available. The 

main problems still remaining are conceptual (e.g., how to defi ne the area M), 

methodological (which techniques are better suited to what measures), and 

technical (developing software tools adequate, for example, to compare niches 

containing large numbers of cells). In this section, we have only scratched the 
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surface—we have offered general considerations that we know will be im-

portant, but none of the methods presented has as yet seen detailed sensitivity 

analysis, and much remains to be learned in this area.

SUMMARY

This chapter provides an overview of challenges inherent in estimating eco-

logical niches and corresponding distributions from data documenting known 

occurrences of species. The fi rst question, of course, is what quantity is being 

estimated—is it the probability of occurrence, probability of suitability, or 

what? Algorithms for developing these estimates may require presence data 

only, or may also need data documenting absences or at least data from the 

background to provide a contrast with the presence data. Model calibration is 

a diffi cult process and requires careful consideration of strategies for data split-

ting, variable selection, thresholding approaches, and other considerations. A 

particularly important consideration is that of model complexity, and how best 

to avoid overfi tting models; a related consideration is transferability of models, 

and how best to avoid genuine extrapolation in E-space and the risks that it 

entails. The chapter concludes with a discussion of how to characterize eco-

logical niches—which are generally manifested in numerous dimensions—and 

as such present serious challenges of visualization, analysis, and interpretation.
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From Niches to Distributions

Species’ potential geographic distributional areas  GP often differ from their 

occupied distributional areas  GO. In this chapter, we discuss the conceptual 

bases for this discrepancy, and summarize methodological approaches to ad-

dressing the consequent problems. First, we discuss the meaning of the poten-

tial distribution GP, and describe reasons why a niche model may not estimate 

it correctly. Next, we explore reasons why a species may not be at equilibrium 

with its potential distribution GP (or GA, see the following), but rather inhabits 

only some subset of areas suitable for it (see chapter 3; Araújo and Pearson 

2005). In terms of the BAM diagram  (see fi gure 3.1), nonequilibrium situations 

may be arise for three reasons. The fi rst is that the set M is frequently less than 

universal, meaning that the species will not be present in all suitable areas of 

the landscape. Second, M may change through time; here, dispersal limitation 

reduces GP to GO. Third, B may often differ from M; that is, in some situations, 

the Eltonian Noise Hypothesis does not hold, and negative interactions reduce 

GA to GP, or to GO if M is not limiting. (Bear in mind that this reasoning is 

limited to cases of negative effects of biotic interactions, and that the situation 

will differ if interactions are positive.) In some cases, both M and B can con-

tribute to nonequilibrium distributions. Finally, we outline procedures for fur-

ther processing of a niche model, which expresses GP or GA, to yield an estimate 

of GO. In this chapter, as in most of this book, we focus on the case of condi-

tions when the Eltonian Noise Hypothesis is true, but attempt to note necessary 

modifi cations when it is not.

POTENTIAL DISTRIBUTIONAL AREAS

Estimates of species’ potential geographic distributions  GP are critical to myr-

iad niche modeling applications (chapters 10 to 15), and can also be used to 

estimate the species’ occupied distribution, although under certain assumptions 

(see the following; Anderson and Martínez-Meyer 2004, Peterson 2006c). GO is 

observable in nature, and is frequently of interest in theoretical and empirical 
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studies, particularly applications in conservation biology where it is crucial to 

know the actual distribution of the species. In contrast, GP is a theoretical con-

struct (see chapter 3), and as such its full extent will probably remain unknow-

able in practice, although in theory it would be possible to perform broad suites 

of experiments to outline it. Now, remembering that that the environments of 

η(GO) � EO constitute the occupied niche space, it is clear that those environ-

ments may occur outside of GO. As we saw in chapter 3, a map of η–1(EO) may 

well be larger than GO, extending into the potential distributional area. Niche 

modeling exercises often strive to estimate GP (see chapter 3), but numerous 

factors may cause the predicted (modeled) potential distribution to be different 

from, and typically smaller than, the species’ true GP. In strategizing for model 

development, investigators should consider each of these factors and aim to 

eliminate, or at least minimize, as many of them as possible.

First, the calibration data G
data

 on which the model is based are drawn from 

GO, which may not encompass the full breadth of environmental conditions 

that the species can inhabit (and may encompass some conditions where it 

cannot persist, of course, if sink populations are included). Unfortunately, the 

species’ full biotically reduced niche EP � η(GO ∪ GI), the projection of which 

onto geography would constitute GP, is unknowable. GO (or a representative 

sample from it) will underrepresent EP and GP if:

1. The data G
data

 used to estimate GO fail to include a representative sampling 

of the environments that the species uses.

2. The algorithm μ(G
data

, E) used to calculate GO overfi ts to G
data

.

3. The universe G is limited, such that M is limited with respect to η(GP).

4. The Eltonian Noise Hypothesis is not true, and some environmental 

conditions suitable for the species exist only in regions where biotic 

interactions do not permit the species to inhabit its full abiotically suitable 

distributional area GA.

With correlative models (the main subject of this book), researchers must gener-

ally accept this reality (i.e., that niche models may not estimate GP completely), 

and deal with the fact that the resulting models may be conservative—in other 

words, that ÊP will generally be a subset of the true EP (contra Soberón and 

Peterson 2005), and as such will identify as suitable an area smaller than the 

species’ full potential distribution GP. The only solution is to measure  species’ 

eco-physiological limits of tolerance experimentally; such approaches never-

theless identify EA and not EP, and the experiments necessary to consider all 

possible negative biotic interactions related to B remain impractical (see chap-

ter 3). We discuss these four conditions in greater detail in the next paragraphs.
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The occurrence data on which niche models are based may be drawn from 

an unrepresentative portion of GO (Peterson 2005b). In this case, these occur-

rence data capture only a subset of the occupied niche space. This problem will 

occur when some conditions that the species inhabits do not exist in the subset 

of GO from which the occurrence data were sampled. Furthermore, in cases 

where the Eltonian Noise Hypothesis is not true, the region from which the 

occurrence data were sampled may contain a community such that biotic inter-

actions limit the species to a subset of the environmental conditions in which it 

occurs elsewhere in different community contexts (Baselga and Araújo 2009). 

To minimize such issues, occurrence data for model calibration should be 

drawn from throughout the species’ distributional area whenever possible, and 

may require testing for sampling bias in environmental dimensions (see chap-

ter 5).

Similarly, even if occurrence records are sampled in an unbiased manner 

from across GO, they may not necessarily capture even its full EO, much less its 

full EP. Generally, this sort of problem occurs with datasets containing few 

records, where sampling error becomes more important. Whenever possible, 

researchers should strive to obtain reasonably large numbers of occurrence rec-

ords (see chapter 5). Numbers of records necessary to calibrate models will 

vary among modeling techniques, and likely also among species (Wisz et al. 

2008). This point should not be taken as indicating that studies based on small 

numbers of records cannot hold great utility (Raxworthy et al. 2003, Anderson 

and Martínez-Meyer 2004, Pearson et al. 2007), but the resulting predictions 

must be interpreted as likely indicating conservative underestimates of the eco-

logical breadth of the species (underestimating EP and thus GP).

Several methodological issues can lead to underestimates (or in some cases, 

overestimates) of species’ niches and potential distributions. Certainly, over-

fi tting to noise or to bias in the occurrence data will tend to shift estimates of 

the species’ potential distribution toward an overly restricted estimate (see chap-

ters 7 and 9). Similarly, if too many environmental variables are included in 

the model, again, overfi tting will be common (Beaumont et al. 2005), and geo-

graphic predictions overly restrictive. (Note that use of too few variables will 

usually broaden estimates of the species’ potential distributional area for lack 

of information with which to constrain estimates of distributional areas.)

Finally, choice of a study region (G) for model calibration that is too broad 

and inclusive can be problematic for all modeling techniques except presence-

only techniques. In particular, G may be so overly broad that it samples GI in-

stead of only GO and areas of genuine absence (i.e., those not in GP, assuming 

that the Eltonian Noise Hypothesis is true); such models will frequently under-

estimate the breadth of a species’ niche and potential distribution (Anderson 
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and Raza 2010). As discussed in chapter 7, this confusion occurs because of 

false negative signals deriving from pixels containing suitable conditions, but 

from which the species is absent owing to dispersal limitations (and biotic in-

teractions, if the Eltonian Niche Hypothesis is not true; see chapter 5). Such a 

situation can lead algorithms to fi t spurious responses. Care should be taken to 

avoid these problems, if the goal of the exercise is to estimate GP (or GA).

NONEQUILIBRIUM DISTRIBUTIONS

Two major classes of factors can cause species to inhabit less than their full 

abiotically suitable  distributional areas GA (see chapter 3): dispersal limitations 

and biotic interactions (the latter of which can in some senses include human 

modifi cations of the landscape; Araújo and Pearson 2005)—we will refer to 

these situations as “nonequilibrium distributions.” Detecting nonequilibrium 

distributions is critical to rigorous development and use of ecological niche 

models, and certainly, when such nonequilibrium is not considered, it can pro-

duce misleading results (Ganeshaiah et al. 2003, Peterson 2005b).

In the terms of the BAM diagram, the question is whether models estimate 

just A, or whether they also take into account the effects of B and M. Quite 

simply, niche models will estimate A when areas that are inhabited provide a 

good (i.e., unbiased) sample of environments across the species’ GA, and the 

data G
data

 are unbiased with respect to E-space. However, if M or B happens to 

bias the sampling of E-space by the species, or if the sampling itself is biased 

in environmental dimensions, the calibration data (i.e., known occurrences) can-

not summarize environments across the species’ full scenopoetic existing fun-

damental niche, and the model will estimate something less extensive than A, 
in the direction of A ∩ B ∩ M (Jiménez-Valverde et al. 2008). Alternatively, 

unbiased samples from GO, in comparison with absence (or background or 

pseudoabsence) data (if taken from the correct portions of G; see the preceding 

discussion and chapter 7) can produce suitable models of A if response curves 

are not truncated in GO. We note, however, that restrictions in geography owing 

to M or B do not necessarily translate into restrictions in E-space.

Dispersal Limitation

Dispersal limitation s can limit species to a GO that is only a subset of its full 

GP, leaving out either disjunct unoccupied areas (which may remain unoccu-

pied over the long term) or areas that are eventually accessible, but to which the 

species has not as yet spread, as in the case of species invasions and responses 

to large-scale environmental changes (Anderson et al. 2002a, Peterson 2003a, 

08peterson.138_149.indd   14108peterson.138_149.indd   141 6/8/11   8:46 PM6/8/11   8:46 PM



1 4 2  C H A P T E R  8

Svenning and Skov 2004). Failure to occupy such areas may stem from acci-

dents or vagaries of evolutionary and biogeographic history, or simply from lack 

of time to respond with population expansions. These factors may introduce 

stochastic elements in the distributions of species; biogeographers commonly 

refer to such phenomena as contingent historical factors (Patterson 1999).

It is important to note that dispersal limitation can be regarded over multiple 

timescales ranging from the present only to deeper, over evolutionary history. 

That is, present dispersal abilities speak to the ability of a species to colonize 

areas separated from inhabited areas. The key nature of such present-day dis-

persal limitations in constraining species’ distributions is demonstrated clearly 

by the case of invasive species overcoming barriers with human assistance (NAS 

2002). Dispersal limitation is also manifested over evolutionary timescales, with 

M representing the areas that have been available to the species for coloniza-

tion over some longer period. Apparently, such long-term dispersal constraints 

are frequently coincident spatially among species, responding to macrogeo-

graphic features (e.g., continents, oceans, major mountain ranges), which is the 

basis for the fi eld of historical biogeography (Crisci et al. 2003). The spatial 

coincidence in dispersal limitation (and to some degree environmental charac-

teristics) across large numbers of taxa is the basis for establishment of biogeo-

graphic regions.

Biotic Interactions

Biotic interactions  also, under some circumstances, may cause a species to in-

habit less than its full GA (Anderson et al. 2002b), although we expect that 

these interactive effects will generally take place on fi ner spatial scales, and not 

necessarily at biogeographic extents, as discussed in chapter 3 (Soberón 2007). 

Counterexamples are known, particularly in the case of suture zones between 

closely related species, but we expect that biotic interactions will generally 

be manifested on fi ner spatial scales (i.e., that the Eltonian Noise Hypothesis 

holds, at least at coarse resolutions). However, this question is empirical, and 

most likely will require in-depth fi eld studies to resolve. Competition generally 

has been the focus of such considerations (MacArthur 1972), but other classes 

of interactions (e.g., predation, parasitism, and even mutualism) may shape 

ecological and geographic distributions as well (Araújo and Luoto 2007). Under 

competitive exclusion, one species reduces the density of another to zero, ef-

fectively reducing the geographic distribution of the other. Quite commonly, 

closely related species show parapatric (i.e., adjacent but nonoverlapping) dis-

tributions highly suggestive of niche conservatism and competitive exclusion 

(e.g., Hall 1981). Clearly, even distantly related species can compete and re-

duce distributions as well, but such cases are harder to identify. It is important 
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to remember that species can compete for many resources that vary in space; 

therefore, outcomes of competitive interactions between species may vary across 

geography, which can complicate understanding of the distributional conse-

quences of competition; this area is an arena for challenging but fruitful future 

research.

Other classes of biotic interactions can similarly reduce species’ distributions. 

For example, a predator may be present in parts of the GA of the species in 

question, preventing it from maintaining populations in those regions (Crooks 

and Soulé 1999, Kutz et al. 2005). The same is true for parasites and pathogens 

(Sutherst 2001), such as the intriguing constraints that tsetse fl ies (Glossina 

spp.) placed on early human distributions (Rogers and Randolph 1988). Inter-

estingly, the opposite pattern holds true for mutualism and any other kind of 

facilitation (e.g., commensalism), which represents a limitation of the heuristic 

Venn representation of the BAM diagram, which allows only for reductive 

interactions. A critical mutualist may be missing in part of the GA of the focal 

species—this absence causes absence of the species as well, even though the 

general abiotic environmental conditions are favorable (Heikkinen et al. 2007). 

Lack of consideration of effects of mutualistic interactions in niches and dis-

tributions is one the most blatant gaps in modern niche theory (see chapter 3; 

Araújo and Guisan 2006).

Finally, a special case is that of biotic interactions with humans, particularly 

competition and predation, which affects many, perhaps even most, of the 

 species on Earth. Major human modifi cations of environments include defor-

estation, selective logging, disturbance of other nonforested habitats, hunting, 

fi shing, and gathering of other species, not to mention modifi cation of global 

climates (i.e., scenopoetic variables). Although these actions generally reduce 

species’ distributions, some species benefi t in the face of human presence (e.g., 

cockroaches, house mice, black rats, bedbugs, and head lice; Sánchez-Cordero 

and Martínez-Meyer 2000).

DETECTING AND PROCESSING

NONEQUILIBRIUM DISTRIBUTIONS

Ecological niche models that initially represent species’ abiotically suitable 

distributional areas can be processed post hoc to take into account factors that 

cause nonequilibrium distribution s, leading to closer approximations of the 

species’ occupied distribution GO. Such steps may also allow more realistic 

evaluations of model performance under certain circumstances (see chapter 9). 

We refer to these steps as “postprocessing ” because they are taken after the 
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initial niche model is calibrated. Several of the procedures for postprocessing 

require binary predictions (presence/absence predictions), so a suitable thresh-

olding rule is often needed to turn continuous and ordinal predictions into bi-

nary ones (see chapter 7).

Testing for Artifactual Absences

Before ascribing lack of occurrences in a given region within GA to dispersal 

limitations or biotic interactions, researchers must fi rst demonstrate that the 

species is genuinely highly likely to be absent there. That is, lack of records 

may derive simply from lack of adequate sampling in the region (Heyer et al. 

1999, Soberón et al. 2007; see chapter 5). Such a situation represents “artifac-

tual absence ,” where the species is not really absent, but rather the lack of records 

is an artifact of inadequate or nonexistent sampling. Protocols exist to test for 

this possibility, at least under certain circumstances (fi gure 8.1): (step 1) model 

output consists of or can be transformed to a binary prediction; (step 2) a par-

ticular area of GA lacking occurrence records can be identifi ed (typically a 

disjunct area); and (step 3) a suite of occurrence records for other species that 

are sampled effectively in similar ways (a “target group”) is available as a sur-

rogate for sampling effort (Anderson 2003).

These tests calculate the binomial probability of obtaining the observed pat-

tern of occurrence records were the area in question actually inhabited. A low 

resulting probability indicates that sampling effort has been suffi cient to detect 

the species were it present, thus demonstrating that the species is likely gen-

uinely absent, at least with the confi dence accorded the probability value ob-

tained. Otherwise (i.e., with a higher probability resulting from the test), the 

species’ absence could be an artifact resulting from inadequate sampling (see 

fi gure 8.1). In such cases, and particularly in the case of rare species, additional 

sampling is necessary before conclusions regarding true absence can be con-

sidered robust. More realistic tests should be developed to permit assessment 

of artifactual versus true absences when predictions are continuous or ordinal 

(in the former case, likely by weighting the probability of a record falling into 

a given grid cell by the strength of the prediction there).

Data quantifying sampling effort  directly (e.g., data documenting survey 

location and intensity for the species in question) can be used for such tests if 

they exist (Anderson 2003), but such information is rarely available. An alter-

native approach is to use records of species belonging to a more inclusive target 

group that can provide an index of sampling effort (Voss and Emmons 1996). 

The target group comprises all species that can be recorded using the same 

techniques that produce records of the focal species: these species do not nec-

essarily form a monophyletic group (Anderson 2003)—e.g., shrews, salaman-

08peterson.138_149.indd   14408peterson.138_149.indd   144 6/8/11   8:46 PM6/8/11   8:46 PM



F RO M  N I C H E S  TO  D I S T R I BU T I O N S  1 4 5

ders, and small lizards all are captured in pitfall traps. The data for the target 

group must be derived from the same data sources that produced (or not) the 

occurrence records for the focal species, so that absences for the focal species 

are in spite of the survey effort expended. If data for a target group are unavail-

able, these tests can be accomplished based on proportional area of regions 

holding records versus those lacking records of the focal species—this ap-

proach, however, requires assumptions of equal sampling effort per unit area in 

both regions, which is unlikely in most systems (Anderson 2003).

Considering Dispersal Limitation

After  establishing that absence from a region of GP (or GA) is statistically sup-

ported as genuine, researchers can remove those areas of predicted presence 

Figure 8.1. Example of tests of artifactual absences for the oryzomine rodent 

Oryzomys albigularis in northern Venezuela. (A) Binary representation (gray) of 

the modeled abiotically suitable area GA; triangles indicate localities where the 

species was collected by the Smithsonian Venezuelan Project (Handley 1976). 

(B) Processed distribution, after removing areas where the species’ absence was 

supported by statistical tests (note disjunct area in the east, in which no records 

exist, but where sampling has not been suffi cient to support a conclusion of ab-

sence of the species). Modifi ed from Anderson (2003).

VENEZUELA

Caribbean Sea

Cordillera de la
Costa Central

Cordillera de la
Costa Oriental
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(but demonstrated actual absence) by means of explicit assumptions. Generally, 

this process involves identifying regions of GP that are disjunct and unoccu-

pied. Disjunct regions of suitable but unoccupied habitat (i.e., those separated 

from known areas of occupied distribution by intervening unsuitable areas) are 

then removed from the prediction (Anderson and Martínez-Meyer 2004).

Alternatively, some researchers have used maps summarizing biogeographic 

regions  (developed previously and independently based on patterns of distribu-

tion of many other species) to delimit areas lacking records that can be re-

moved from the prediction (Peterson et al. 2002b). In such cases, the possible 

artifactual nature of the absences should still be assessed before any reductions 

of the species’ GP. Whenever possible, however, a species-specifi c approach to 

delimiting areas for removal is preferable, rather than broad and infl exible as-

sumptions based on faunal or fl oral summaries. All of these approaches assume 

that the species cannot disperse across intervening unsuitable areas, which is 

likely reasonable, at least for organisms that are poor dispersers.

It is also possible to model dispersal processes explictly, rather than the sim-

pler (but less realistic) assumption that the species has not crossed and cannot 

cross areas of unsuitable habitat. Development of such approaches is quite 

important in the context of anticipating species’ distributions under future cli-

matic scenarios. Such an approach takes into account the spatial confi guration 

of suitable patches within an unsuitable matrix (e.g., Collingham et al. 1996, 

Pearson and Dawson 2005, Svenning et al. 2008, Engler and Guisan 2009). 

These approaches permit consideration of spatial patterns of relative suitability 

across the study region, rather than just binary maps. In this context, niche 

model results can provide information regarding suitability both for population 

persistence and for dispersal. The inverse of suitability can be used as a “cost 

surface” (Lee and Stucky 1998) for modeling dispersal, and can be input into 

simulations of the likelihood of dispersal derived from landscape ecology tools 

(Bunn et al. 2000, Ray et al. 2002); some types of dispersal barriers may best 

be estimated via other means (e.g., the effects of rivers as barriers may best be 

measured by river fl ow volume).

For any of these approaches, a very general challenge is to distinguish be-

tween lack of dispersal  (ever) to the unoccupied region and a past population 

that went extinct. For example, the Island Scrub-Jay (Aphelocoma insularis) is 

endemic to Santa Cruz Island off southern California; this island was con-

nected to Santa Rosa Island only 20,000 years ago, but whether the jays were 

ever on Santa Rosa Island is up in the air completely. Only fossil, subfossil, or 

anthropological (e.g., cave paintings, written records, or reliable oral traditions) 

data can establish the latter situation with certainty (e.g., Timm et al. 1997), 

and such information rarely exists. As such, lack of positive records confi rming 
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occurrence in a particular region in past time periods may represent another 

kind of artifactual absence, unless abiotic conditions have changed. If appro-

priate data were to be available, the same tests mentioned earlier (Anderson 

2003) could be employed to determine whether sampling for the past period 

was suffi cient to demonstrate absence in the region in question in that time 

period (i.e., that lack of past records in the region is not an artifact of inade-

quate sampling for records in past time periods). Unfortunately, however, re-

searchers will seldom be able to obtain suffi cient amounts of data for these 

tests. Overall, these methods provide a framework for reconstructing and un-

derstanding spatial patterns of dispersal limitation.

Considering Biotic Interactions

It is also possible to assess constraints on species’ distributions caused by bi-

otic interactions  (again, in tandem with tests demonstrating the species’ ab-

sence statistically). As mentioned previously, competition represents a primary 

biotic interaction limiting species’ distributions (Udvardy 1969, MacArthur 

1972, Heikkinen et al. 2007), although the roles of other negative (and positive 

also) interactors have not been fully appreciated. Whereas a competitor may 

reduce density of a focal species without reducing its populations to zero (see 

chapter 3), we here examine the extreme situation in which the competing spe-

cies excludes the focal species completely from some areas of A.

The idea of competitive exclusion  and competitive release  has seen exten-

sive discussion and exploration, as perusal of a good Ecology textbook will 

show (e.g., Begon et al. 2006), and the idea has been applied to real species’ 

distributions at least in some simple situations (Anderson et al. 2002b). It is 

important to bear in mind that these spatial tests cannot demonstrate compe-

tition conclusively: experimental fi eld tests, particularly involving removal or 

exclusion of putative competitor species, are necessary for defi nitive conclu-

sions regarding competition (Koplin and Hoffmann 1968, Brown 1971). How-

ever, because such experiments are not frequently possible, geographic tests 

may constitute the best opportunity to address the phenomenon (Costa et al. 

2008). Extending these approaches to other classes of biotic interactions (i.e., 

predation, parasitism, and mutualism) will be an important step forward in un-

derstanding the dimensions and role of biotic interactions in limiting species’ 

distributions in G and E (Araújo and Luoto 2007, Heikkinen et al. 2007).

Tests for competition are available for two-species interactions, and are 

applicable only under certain conditions (Anderson et al. 2002b). First, binary 

predictions are required, and distributions should be parapatric, such that geo-

graphic contact occurs without the possibility of broad coexistence. What is 

more, the species’ respective GA’s must overlap, indicating areas of potential 
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sympatry (i.e., within GA for both species) in three situations: (1) a real contact 

zone between known distributional areas for the species, (2) regions where only 

one of the two focal species is present, and (3) regions where only the other 

species occurs. The fi rst condition ensures that outcomes of interactions be-

tween the two species can be observed, whereas the latter two allow tests of 

competitive release, and ensure that the niche models for each species are in-

formed regarding the full suite of environments that it can inhabit without the 

restrictions imposed by competition with the other species.

The approach in these tests consists of comparing the geographic and eco-

logical “behavior” of species in area (1) as compared with areas (2) and (3); 

here, we present the logic of tests for the effects of competition only (see An-

derson et al. 2002b). Competitive exclusion by the fi rst species is indicated 

when it is unexpectedly (i.e., more than chance expectations) more common 

than the other within (1), and yet the excluded (i.e., the other) species inhabits 

those environments in (3). In cases where these tests indicate competitive ex-

clusion (and note that the distributional areas in these discussions are in actual-

ity the modeled estimates of each area), GA of the inferior competitor may be 

reduced by removing areas of its GA that are also within the GA of the superior 

competitor and lie along real contact zones. No areas along real contact zones 

should be removed from GA of the superior competitor, and areas (2) and (3) 

should not be changed because of competition, although they represent areas 

where dispersal limitation (M) likely reduces GP to GO (see the preceding dis-

cussion). In reality, though, the intensity and outcomes of competitive inter-

actions may vary across geography, calling for more complicated analyses, and 

similar approaches may allow insights when all conditions described earlier are 

not met (Anderson and Martínez-Meyer 2004, Costa et al. 2008).

Considering Human Modifications of the Environment

Clearly, humans have impacted distributions of countless species, and these 

impacts must be considered in estimating GO. Two paradigms exist for such 

studies. The fi rst is to include environmental data refl ecting human actions di-

rectly as predictor variables in the modeling process; the other considers human 

effects on species’ distributions via post hoc processing steps.

In the fi rst case, human-affected variables are included in the modeling pro-

cess itself (e.g., Thuiller et al. 2004a). Various remotely sensed datasets, such 

as land cover, vegetation indices, and maps of human presence across land-

scapes, lend themselves nicely to this approach—quite simply, occurrence 

data from the same time period as the human-affected environmental data are 

used to generate models of A ∩ B(�GP) directly. However, it should be borne 

in mind that anthropogenic effects and abiotic factors may frequently act at 
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different scales, necessitating careful consideration of potential biases. Also, 

human-infl uenced variables may frequently covary with climate, leading to sta-

tistical problems and underestimation of the importance of the human-infl uenced 

variables (Thuiller et al. 2004a). Perhaps the most signifi cant drawback of this 

approach, however, is that occurrence records must correspond temporally to 

environmental data, which will frequently limit occurrence datasets to pro-

hibitively small subsets (see chapter 5), which themselves are more likely to be 

prone to collection biases.

The second approach is to build the niche model based only on environmen-

tal data that do not include effects of human presence but then remove areas 

where human presence dominates (Sánchez-Cordero et al. 2005, Peterson et al. 

2006b). Here, both historical and recent records are used to calibrate models, 

so the models will often be more robust to the vagaries of sampling. Subse-

quently, the human “footprint” is removed from the predicted potential dis-

tribution GP to estimate GO (of course, consideration of the role of M is also 

necessary). Simple approaches just remove those areas using a GIS via what 

has been termed a “cookie cutter” approach, although identifying areas for 

removal may require additional biological information, perhaps from recent 

occurrence records, natural history information, or expert opinion (Anderson 

and Martínez-Meyer 2004, Sánchez-Cordero et al. 2005). For example, for a 

species known to inhabit only primary forests, all deforested or substantially 

disturbed areas can be removed from the prediction (Ortiz-Martínez et al. 2008). 

More complex approaches develop models based only on longer-term vari-

ables (i.e., that do not refl ect human presence, such as “original vegetation”), 

but then transfer model rules onto human-infl uenced versions of the landscapes 

(Peterson et al. 2006b).

SUMMARY

An important and consistent result of niche modeling exercises has been that 

abiotically suitable areas generally exceed occupied distributional areas. A fi rst 

step is to consider sampling to date to determine whether it has been suffi cient 

to establish the species’ absence from a predicted region lacking records of the 

species. This inequality results from the effects of dispersal limitations and/or 

biotic interactions in constraining the distribution of the species to a subset of 

the full distributional potential. Key steps for taking these considerations into 

account are reviewed, including means of reducing estimates of the abiotically 

suitable area to estimates of the occupied distributional area.
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Evaluating Model Performance

and Signifi cance

Evaluating the predictive performance  and statistical signifi cance  of a model 

constitutes a critical phase of niche modeling, and researchers should demon-

strate that their models are of suffi cient quality to meet the needs of the project at 

hand before using or interpreting them in any way (Peterson 2005a). In chapter 4, 

in the process of clarifying modeling concepts and developing basic mathemat-

ical notations, we also provided an overview of key principles of model evalu-

ation. Here, we develop the topic in considerably greater depth, and discuss a 

framework for selecting appropriate evaluation strategies for a particular study.

We begin by reviewing key concepts, but now in the light of input data char-

acteristics discussed in chapters 5 and 6, which lead us to explore limitations 

inherent in most occurrence datasets available for model evaluation, and to com-

ment on ways in which they can infl uence evaluation adversely. The picture 

contrasts rather sharply with the optimistic panorama that we painted in chap-

ter 4, but shows clearly the need to discuss methods for selecting evaluation 

data carefully. We begin by presenting commonly used quantitative measures 

of model performance and signifi cance. Because the aims of modeling projects 

vary (see chapter 3), no single “best” approach to evaluation exists ( just as we 

saw in chapter 7 that no single “best” modeling algorithm is likely to exist); 

however, we can outline approaches that are more or less suited to rigorous 

model evaluation. Hence, we discuss various evaluation approaches in light of 

when they are likely to be appropriate. Finally, we set out a vision of the re-

search agenda as regards model evaluation, highlighting areas in need of theo-

retical and/or methodological advances.

PRESENCES, ABSENCES, AND ERRORS

We recall a few critical principles that were outlined in chapter 4. There, we 

took for granted several rather optimistic assumptions that may be incorrect or 
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untenable in the arena of modeling species’ ecological niches EA or EP (particu-

larly in contrast to the challenges of evaluating the related by distinct species 

distribution models). Foremost is the elementary assumption that evaluation 

data  are suffi cient to allow for unequivocal, transparent empirical observation 

of Y � 1, 0. This situation, however, is rarely the case: occurrence data can 

be presence-only , presence/background , presence/pseudoabsence , or presence/

absence , and even in the latter case the meaning of absence data is manifold 

(see chapter 5). Although most studies evaluate models based on the same 

kinds of data used in model calibration, this situation is not necessarily always 

the case. For example, Elith et al. (2006) developed models based on presence-

only or presence/background data, but evaluated them with presence/absence 

data. Furthermore, even when more kinds of data are available for evaluations, 

some model evaluation strategies use only presence records.

In fact, special considerations arise because the notion of an “absence” is 

questionable in niche modeling (see chapter 5). That is, omission error s (Y � 1, 

Ŷ � 0) are usually genuine in indicating model failure, except when identifi ca-

tion or georeferencing errors, sink populations, or other misleading factors cause 

problems. On the other hand, problems surrounding the concept of commis-

sion error  (Y � 0, Ŷ � 1) are pervasive in niche modeling—in fact, much of 

the “error” ascribed to commission may not be erroneous at all in such appli-

cations. A distinction, at least conceptually, and operationally to the extent pos-

sible, between real and apparent commission error components is paramount 

in model evaluation (Anderson et al. 2003).

Apparent commission error  does not refl ect real error in model calibration, 

but rather may derive from incomplete evaluation data, inappropriate selection 

of the evaluation region, or both. Two major factors contribute to apparent 

commission error: incomplete biological sampling across the landscapes being 

used to evaluate models (which is universal), and nonequilibrium distributions 

(e.g., owing to dispersal limitations and possibly to biotic interactions), cre-

ating absences in areas in which the species could maintain populations (see 

chapter 8).

In fi gure 3.1, it is clear that GP may exist outside of M; put another way, 

GI is rarely or never empty, meaning that some areas within GP will be unin-

habited by the species. Moreover, even within M, few or no taxonomic groups 

have been sampled thoroughly across their entire geographic distributions (So-

berón et al. 2007), so even within GO one should expect to see some (often 

many) undocumented map cells. Demonstrating absence for a species is particu-

larly diffi cult for analyses at the relatively coarse resolutions typical in niche 

modeling studies (see chapter 5; Anderson 2003). Hence, lack of a record of a 

species in a grid cell that the model predicts as suitable does not necessarily 
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indicate that the prediction was in error (i.e., commission error or a false 

 positive)—rather, the species may truly be there, but the grid cell has seen no-

sampling or sampling has been inadequate to detect the species there (see chap-

ter 5). This problem exists for presence/background and presence/pseudoabsence 

evaluation datasets, but not for genuinely presence-only evaluations that do not 

use any of the negative data. Furthermore, even with high-quality presence/

absence datasets, most “absence” records cannot be taken as such with certainty, 

because probability of detection is typically �1 (Boulinier et al. 1998, Mac-

Kenzie et al. 2002); further discussion of these issues is provided in chapter 5.

As mentioned earlier, the situation is most extreme for presence/background  

(or presence/pseudoabsence) data sets. With such datasets, a sample of the study 

region is taken to characterize the study region as a whole and serve as a com-

parison with locations where the species is known to be present. For most taxa 

and regions, sampling is nonexistent or at best insuffi cient in the vast majority 

of grid cells (Prendergast et al. 1993, Bojórquez-Tapia et al. 1995, Peterson et 

al. 2002a, Soberón et al. 2007). Hence, even though they may be appropriate 

for model calibration, background or pseudoabsence pixels typically are not 

valid for use in evaluation (though note, for example, some uses in presence/

background ROC, later; McNyset 2005). To provide realistic evaluations, re-

sulting estimates of commission error  must be downweighted relative to omis-

sion error to a degree appropriate to the analysis at hand (unfortunately, deter-

mination of an appropriate weighting scheme remains an arbitrary process; see 

chapter 4 and the section “Future Directions” later in this chapter). Background 

or pseudoabsence pixels, however, should never be used in evaluation of binary 

models (see the following).

The second major factor that may contribute to apparent commission error 

is the nonequilibrium nature of many species’ distributions . As detailed in 

chapter 8, few species inhabit the full spatial extent of their environmental 

potential GP (or GA, if the Eltonian Noise Hypothesis is true); as a result, in 

many cases, the spatial complexities of nature and geography contribute im-

portantly to apparent commission error. Nonequilibrium distributions derive 

from dispersal limitation and/or biotic interactions (including human impacts) 

that limit species’ distributions, and may contribute more to apparent commis-

sion error than incomplete sampling (depending, of course, on the spatial extent 

of the analysis). For presence/background and presence/pseudoabsence evalu-

ation datasets, the relative importance of these two factors will be species- and 

landscape-specifi c, and will depend critically on the size of the study region 

used for model evaluation relative to the extent of the potential distributional 

area of the species within that region (Anderson et al. 2003, Phillips et al. 2006, 

Barve et al. 2011).

09peterson.150_182.indd   15209peterson.150_182.indd   152 6/8/11   8:49 PM6/8/11   8:49 PM



M O D E L  P E R F O R M A N C E  A N D  S I G N I F I C A N C E  1 5 3

These factors lead us to a series of guidelines for selecting appropriate re-

gions for evaluating models. Evaluations will be more valid for taxa that are 

closer to equilibrium with contemporary environmental conditions , which is 

often the case for generalist and good disperser species, and for species occur-

ring in regions where dispersal barriers or limiting biotic interactions are mini-

mal. Many times, it is diffi cult to separate when species are not in equilibrium 

versus when lack of sampling creates gaps, especially for rare species (see chap-

ter 8). Because effects of biotic interactions may be more pronounced at fi ner 

resolutions, and they may not even be manifested noticeably at coarser resolu-

tions (see chapter 2), consideration of dispersal limitations becomes principal 

(see in-depth treatment later). Put another way, if this reasoning is true, M in 

the BAM diagram generally should defi ne the region of analysis (Barve et al. 

2011).

The problem, of course, is that no good, objective approach is available for 

delineating M for any particular species (see detailed treatment in Barve et al. 

2011). Occurrence data for recently arrived invaders may be particularly prone 

to problems of apparent commission error because M is so diffi cult to estimate. 

Model evaluations may be most realistic when limited to areas within M; how-

ever, although this tactic remains rare, theoretical treatments of these issues 

exist (see chapter 8), as do empirical examples (Anderson et al. 2002a, Ander-

son 2003). It is no accident that the same principles for selecting appropriate 

study regions (see chapter 7; Anderson and Raza 2010) coincide with those for 

choosing regions for realistic model evaluation.

CALIBRATION AND EVALUATION DATASETS

A second implicit assumption in chapter 4 is the availability of two pools of 

occurrence data: data for calibrating  models, and data for evaluating  model 

predictions. These two datasets are assumed to be statistically independent. If 

data points are to be used for estimating E
val

 and E
ver

 (see chapter 4) correctly, 

we expect that both datasets will be independent random samples from the 

same distribution for (Y, X). Ideally, this distribution is equal to the distribu-

tion of “typical” values (Y, X) that one hopes to reconstruct via modeling. 

When datasets fail to be representative in this sense, we speak of sampling bias 

produced by vagaries of the biological sampling that produced the occurrence 

records at hand (although the dataset also might not be representative of GA or 

GP because of limited dispersal or biotic interactions in the region of model cali-

bration). In both such cases, the distribution being sampled may not coincide 

with the typical values. Sampling bias  in calibration occurrence datasets may 
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or may not be present in the evaluation datasets as well. Throughout this book, 

unless otherwise noted, we use “bias” to refer to the effects of biased sampling, 

rather than to estimation bias possibly inherent in the model-fi tting methods 

themselves (i.e., the idea that f̂  may consistently over- or underestimate f, even 

if data are unbiased in terms of sampling).

Given discussions in chapters 5 and 6, we should expect that the data at hand 

are likely to be biased, but the effects of this bias  may be insidious. Biased data 

that violate stated or implicit assumptions may throw off modeling methods 

and produce unreasonable results. Whereas such biases refl ect problems in-

herent in the calibration data, some modeling methods may be more or less 

susceptible to these problems. For instance, a model may fi t a subtle pattern in 

the calibration dataset that is not found in the evaluation dataset; such problems 

are not just shortcomings of the data, but also refl ect a lack of robustness of the 

modeling method to minor patterns in the calibration data. For some reason 

(e.g., too many degrees of freedom in a GAM, too-high-order polynomials in a 

GLM, or too many nodes in hidden layers in a neural network), the algorithm 

fi ts  relationships that are more complex than the real ones. With a slightly dif-

ferent calibration dataset, relationships would not be fi t in the same way. Con-

versely, if it is the evaluation dataset that is biased, unrealistic assessments of 

model quality may result. Finally, if the same biases are present in both calibra-

tion and evaluation datasets (e.g., when these datasets are created by splitting a 

single sample), the evaluation cannot detect the bias or any overfi tting to it, and 

hence may lack generality when the model is challenged with genuinely inde-

pendent data.

OVERFITTING, PERFORMANCE, SIGNIFICANCE,

AND EVALUATION SPACE

A fundamental concept introduced in chapter 4 is that of overfi tting . Overfi t 

models show close fi t to calibration data, but are less able to predict fully in-

dependent data (see chapter 7). Overparameterization  (i.e., excessive model 

complexity ) and/or insuffi cient sample size are generally the culprits for over-

fi tting. Models may also show a small E
ver

 relative to E
val

, owing to overfi tting 

to biases in the calibration data, as described earlier.

An important goal of model evaluation is to detect such overfi tting or sensi-

tivity to bias, which in any case indicates a poor or unreliable model. In this 

section, we clarify strategies for detecting these two kinds of problems in model 

calibration, especially when data have both bias and noise. Of particular inter-

short
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est is understanding situations in which automated modeling methods are able 

to fi t models with little or no monitoring required.

Model evaluation includes two distinct endeavors: quantifi cation of perfor-
mance , and tests of signifi cance . Measures of performance per se generally do 

not test statistical hypotheses, but rather characterize how well or poorly the 

model achieves a particular goal. They include quantifi cations of omission 

error or commission error and indices that combine omission and commission 

(see chapter 4). Some measures of performance indicate a model’s ability to 

rank presences and absences correctly, while others assess a model’s goodness 

of fi t to observed presences and absences. It should be noted that different sorts 

of studies with different needs may require distinct performance measures.

In contrast, tests of signifi cance determine whether observed predictions 

of evaluation data differ from null expectations with a particular level of prob-

abilistic confi dence. Tests of signifi cance are often based on some measure of 

performance. Commonly, signifi cance tests assess whether model predictions 

of records in the evaluation dataset are “better than random” regarding the 

prediction and evaluation data. In other cases, tests can determine whether two 

models differ from each other as regards some measure of performance. In the 

end, it is the user’s fi nal goal in the study that determines which of the two 

evaluation concepts is relevant to a particular challenge—for an example from 

disease diagnosis, a test for hepatitis infection may perform statistically much 

better than a random model, but a performance evaluation might indicate that 

it is yields correct predictions in only 54% of tests, which is probably not an 

acceptable level of performance. Because of inadequacies in the data typically 

available, we must also learn to distinguish between situations in which mea-

sures of performance and signifi cance can be interpreted literally, and others in 

which they cannot be taken at face value.

Finally, an issue worthy of discussion is whether model evaluation is best 

carried out in E-space or G-space. Typically, and almost without exception 

(Martínez-Meyer and Peterson 2006), researchers conduct evaluations of 

models in geographic space (i.e., in terms of prediction of geographic patterns 

of occurrence). This G-space evaluation occurs by applying the model to 

make a prediction for each pixel in the study region. The strength of the pre-

diction is assessed for each cell holding an occurrence record (whether regard-

ing presence or absence) in the evaluation dataset. However, it is also possible 

to evaluate models in environmental space —that defi ned by the environmental 

variables used in modeling. Although such approaches remain rare (see ex-

ample in Martínez-Meyer and Peterson 2006), they may hold considerable ad-

vantages when the goal is to estimate ecological niches. Therefore, we look 

short
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toward testing in environmental space as an optimal solution in niche modeling 

applications, but much work remains to clarify its advantages and peculiarities 

(see the section “Future Directions” at the end of this chapter).

SELECTION OF EVALUATION DATA

Meaningful evaluation  of ecological niche models and associated geographic 

predictions depends on careful and appropriate selection of suitable occurrence 

datasets with which to calculate measures of performance and signifi cance. 

Several related issues are of importance: the degree of independence between 

calibration  and evaluation data in space and time, how best to divide occur-

rence records into calibration and evaluation datasets, and whether records are 

divided with respect to spatial position.

Perhaps most commonly, the evaluation data derive from the same study 

region and time period as the calibration data (Peterson 2001). Alternatively, 

evaluation data may be drawn from a different time period (e.g., Martínez-

Meyer et al. 2004a, Araújo et al. 2005a, Peterson et al. 2005a), even though the 

geographic area remains the same for both calibration and evaluation. In some 

studies, however, the evaluation data come from a different region than the cali-

bration data, although usually from the same time period (Peterson et al. 2009b). 

Studies of invasive species represent an example of this situation, with a spe-

cies’ model being calibrated on its native range, and then evaluated according 

to its ability to predict records of the species on the invaded range (Peterson 

2003a; see chapter 13). Whereas nature divides records spatially into two pools 

in the case of invasive species, investigators can develop these spatially struc-

tured divisions themselves (see discussion of spatially structured evaluations, 

later). Finally, calibration and evaluation data may be drawn from both differ-

ent areas and different time periods, but such cases are rare (Nogués-Bravo 

et al. 2008b, Peterson et al. 2009b). Whenever models are evaluated in regions 

or time periods distinct from those in which they were calibrated, an additional 

requirement will be consideration of whether the model is being projected onto 

conditions (E-space) not found in the calibration dataset, which may constitute 

a substantial problem (see discussion of model transfer ability in chapter 7).

Ideally, evaluation data will be fully independent from calibration data, 

 allowing for true model validation  (Araújo et al. 2005a). Unfortunately, fully 

independent datasets seldom exist, and confusion can arise between genuinely 

statistically independent data and nonindependent data that were collected 

independently. It is worth clarifying that “independence ” can be understood in 

two ways: that data points or that entire datasets may be statistically indepen-
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dent such that estimates of E
val

 and E
ver

 are correct. However, we hasten to 

note that the idea of obtaining calibration and evaluation datasets from distinct 

sources or from separate surveys does not make them fully independent, as has 

been assumed, for example, in Elith et al. (2006). A more restrictive notion of 

independence means that points should be neither spatially nor temporally au-

tocorrelated (Dormann et al. 2007); this point is important, for it leads to the 

question of biological independence—any occurrence of a population at a par-

ticular place is determined in some way by occurrences of some other popula-

tion at some previous point in time. Researchers often attempt to obtain data-

sets for model calibration and evaluation (e.g., via new fi eld collections or 

samples from data sources distinct from those that produced the calibration 

data), but care must be taken to assure that independence of samples is suffi -

cient that model evaluations are reliable.

Data from such “different” sources may not in truth be independent. Such 

situations may occur because similar biases are present in the biological sam-

pling underlying both the calibration data and the seemingly independent eval-

uation data. For example, because all researchers face similar constraints on 

access to study sites, specimen records in different museums often refl ect simi-

lar geographic bias es in sampling (e.g., more sampling near the same cities, 

roads, and rivers; Funk and Richardson 2002, Reddy and Dávalos 2003; see 

chapter 4). Evaluation and calibration data may also not be fully independent 

owing to the nonequilibrium distributions that can create common associations 

(see chapter 8). Similar biases, at least in geographic space, complicate evalu-

ations (see the following).

Because fully independent datasets seldom exist, and because even relatively 

independent datasets can be quite costly to generate, most evaluation efforts 

are based of necessity on partitions of single samples into calibration and eval-

uation datasets. Many strategies for achieving this subdivision are available, but 

investigators have simply divided occurrence records randomly without respect 

to geography (Fielding and Bell 1997, Araújo et al. 2005a). Here, a subset of 

records is chosen randomly for the calibration dataset, and remaining records 

are set aside as the evaluation dataset (the “split-sample” approach of Fielding 

and Bell 1997). Because this particular approach has major drawbacks that will 

be discussed later, we present various alternative strategies for data splitting , 

including in particular use of spatially structured data subdivisions, which may 

offer important advantages.

One approach that extends the idea of a single random data split is termed 

“K-fold cross-validation”  (sometimes referred to as cross-partitioning). Here, 

we echo the exposition and basic notation of Hastie et al. (2001), making 

specifi c adaptations to the case at hand when pertinent. This cross-validation 
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procedure does not match our usage of the term “validation” (i.e., evaluation 

based on fully independent data), but its intent is the same: to quantify in some 

way the ability of a model to anticipate the behavior of the system in un-

sampled regions. Here, the investigator divides the n occurrence records into 

calibration and evaluation pools randomly. However, several (K) roughly equal-

sized pools are created, rather than just two. Next, K models f̂
–1

, f̂
–2

}, . . . , f̂
–K 

are built successively by setting aside (hence the “minus” subscript) one of the 

K pools to be used as evaluation data, and building a model using the remaining 

K – 1 pools, which together constitute the calibration dataset for that step. Each 

pool is used as an evaluation dataset only once, and each occurrence record 

appears in an evaluation dataset exactly once. Let us denote by k(i) the index 

of the evaluation pool corresponding to the i-th occurrence record: for exam-

ple, if observation 25 ends up randomly in the third pool, then k(25) � 3. For 

any loss function as introduced in chapter 4, an estimate of prediction error is 

then given by

 1
 EK

val
 � — ∑

i�1

n

 L[Yi, f̂–k(i)(Xi)]. (9.1)
 n

When only few records are available, a special case of K-fold cross-validation 

can be useful. When K � n (i.e., each pool consists only of a single record), 

K-fold cross-validation is equivalent to the standard “leave one out” or “n – 1 

jackknife” procedure (Hastie et al. 2001). An approach has been developed that 

allows researchers to assess statistical signifi cance and performance, in spite 

of small sample sizes (e.g., �25) of occurrence records available (Pearson et 

al. 2007). However, with these approaches, it should be borne in mind that, in 

contrast to the E
val

 considered in chapter 4, the terms now being averaged in 

EK
val

 are not independent, because every data point participates both in evalua-

tion and calibration. This double role introduces estimation bias as defi ned 

earlier, in the sense that EK
val

 can systematically overestimate or underestimate 

the true value of validation error. When K � n, EK
val

 is approximately unbiased 

for the true prediction error, but its variance may be underestimated, because 

the n calibration datasets share many common entries (Shao and Wu 1989, 

Efron and Tibshirani 1993; see implementation in Anderson and Raza 2010). 

The computation involved under this approach can be onerous, as it implies 

n times more model calculations.

If K is too small (i.e., the pools are too large), on the other hand, EK
val

 achieves 

lower variance, but it may be biased. It is hard to specify what value of K 
should be selected as an appropriate middle ground. Typical values of K are in 

the 5 to 10 range (Hastie et al. 2001). Without a doubt, in the end, a price is paid 

short
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when occurrence data are not abundant: the price is that one must settle for 

more approximate answers and reduced confi dence in them.

Another version of the jackknife can be used to develop calibration and 

evaluation datasets when larger numbers of occurrence records are available. A 

more general form for the jackknife is n – d, where d is the number of records 

withheld (deleted) from the calibration set and used for evaluation. This pro-

cedure amounts to sampling without replacement and is also sometimes termed 

subsampling (Efron 1987). Typically, many iterations (500–1000) of this sort 

of jackknife are done. Like K-fold cross-validation, the n – d jackknife can 

produce composite predictions (see the following) as well as estimates of per-

formance, signifi cance, and uncertainty (after correction of variance estimates 

for lack of independence among calibration sets; Warren et al. 2008). However, 

when n is large, these approaches do not guarantee that every occurrence rec-

ord enters into an evaluation dataset (in contrast to K-fold cross-validation, 

where each record does so exactly once). However, if large numbers of itera-

tions are developed and d is even moderately large, all occurrence records will 

likely occur in one or more evaluation sets.

K-fold cross-validation holds two main advantages over the single split-

sample strategy. First, because each occurrence record appears in one evalua-

tion dataset, the exercise ensures consideration of the ability of the models to 

predict all environments known for the species; on the other hand, in the single 

split-sample approach, key atypical records may not enter in the evaluation 

dataset at all. Second, the resulting set of K models provides a useful indication 

of the sensitivity of the modeling process to random differences in the occur-

rence data available. The K models can be combined to yield estimates of the 

species’ niche and distribution (e.g., mean value for each pixel) that are more 

robust to vagaries of division of occurrence records into calibration and evalua-

tion sets than would be a single split; furthermore, the suite of K models can be 

used to estimate the error term E
val

 (Hastie et al. 2001, Araújo and Luoto 2007). 

Alternatively, a model calibrated using all available occurrence records can be 

used for interpretation, but evaluation statistics drawn from the K-fold exercise 

can provide measures of model performance, signifi cance, and uncertainty.

Finally, a standard bootstrap  procedure can be employed to create many 

calibration and evaluation datasets from a sample of n occurrence records. As 

in cross-validation and jackknifi ng, bootstrapping produces multiple calibra-

tion datasets. More precisely, if (Y
1
, X

1
), . . . , (Yn, Xn) is the original dataset, 

one draws size n random sets (Y*
11

, X*
11

), . . . , (Y*
n1

, X*
n1

) thru (Y*
1B, X*

1B), . . . , 

(Y*
nB, X*

nB) with replacement from original data points, where B is a large num-

ber (in the hundreds or thousands, depending on available computing power) 

short
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of repetitions. Each of these B replicate datasets is called a “bootstrap sample .” 

Conceptually at least, one may fi t a model to each replicate to obtain predicted 

values f̂ *1(Xi) thru f̂ *B(Xi) for i � 1, . . . , n. The estimate of prediction error is 

an average of averages of all losses computed with these bootstrap samples, or

 1 1
 E

val
boot � — ∑

i�1

n

  — ∑
b�

B

1

L[Yi, f̂
*b(Xi)] (9.2)

 n B

Again, this estimate may be affected by estimation bias, because several of the 

replicate samples may actually contain (Yi, Xi). One suggestion for reducing 

the tendency for bootstrapped models to overfi t and carry estimation bias is to 

average only over samples that do not contain (Yi, Xi), or

 1 1
 E

val
boot2 � — ∑

i�1

n

  —— 
b∈
∑

C(i)
L[Yi, f̂

*b(Xi)], (9.3)
 n |C(i)|

where C(i) is the set of bootstrap samples that do not contain the ith obser-

vation point. Other approaches exist to correct bias (see Hastie et al. 2001 and 

references cited therein).

Bootstrapping may be advantageous relative to the techniques discussed 

earlier, which result in calibration datasets with fewer records than the original 

dataset, which in turn may affect parameterization of algorithms for which 

implementation varies according to the number of records (Phillips et al. 2006). 

In contrast, bootstrapping yields calibration datasets with the same n records 

as the original, and thus avoids such problems. However, in bootstrapping, an 

individual record may be included in a given calibration set more than once, 

which may complicate application of some modeling applications, particularly 

when sample sizes are small. Because bootstrapping samples with replace-

ment, it does have one important and intuitive drawback over the techniques 

discussed earlier: in each iteration, it does not produce an evaluation dataset 

composed exclusively of records withheld from the calibration dataset, so it 

does not lend well to assessment of performance and signifi cance. Bootstrap-

ping has received little use in modeling ecological niches (but see Guisan and 

Zimmermann 2000).

All of the preceding split-sample approaches, because both calibration and 

evaluation records are selected randomly from the same pool of data, suffer 

from at least two problems. First, they constitute nonindependent samples from 

the overall occurrence data, so evaluations of models based on such data will 

often yield overoptimistic assessments of model predictive ability. Indeed, mea-

sures of model performance based on such split samples of data may correlate 

little with measures based on genuinely independent evaluation data (Araújo 

et al. 2005a). Second, any biases (see chapter 5 and discussions earlier) present 
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in the overall occurrence dataset are preserved in both the calibration and eval-

uation datasets, so the evaluation dataset cannot detect overfi tting  to those 

biases, because the evaluation records hold the same biases, and model perfor-

mance is overestimated.

As a partial solution to the second problem, it is possible to fi lter occurrence 

records spatially (Iguchi et al. 2004). For example, an occurrence dataset sus-

pected of having substantial environmental bias, perhaps owing to biased sam-

pling in G-space, may be reduced by removing records falling close to each 

other in geography. Such a procedure may reduce (although likely not elimi-

nate) environmental bias present in the dataset (Hidalgo-Mihart et al. 2004). 

However, these procedures have the drawback of reducing sample sizes avail-

able for modeling, and possibly even diluting the environmental signal of the 

niche, if fi ltering is too strong.

As an alternative to all the random split-sample approaches described ear-

lier, spatially structured partitioning  of occurrence data offers important advan-

tages, in particular regarding the potential to identify overfi tting to sampling 

bias. Spatial partitions separate occurrence records into calibration and evalu-

ation datasets by geographic areas rather than at random (Araújo and Guisan 

2006). Geographic regions for subsampling can be chosen in various ways: 

according to political units such as states or counties (McNyset 2005), via 

arbitrary geometric shapes such as squares or bands (Peterson et al. 2007c, 

Williams et al. 2008), or by calculation of p sets of areas so as to maximize the 

distance traveled between them (a p-maximum problem in contrast to the com-

monly framed p-medium problem; Araújo et al. 2001).

The idea behind spatial subsampling is to provide a more stringent test of 

model predictions than a random split: where evaluation and calibration records 

are closely intermingled (as in the latter case), spatial autocorrelation  reduces 

their independence, and the same sampling biases will be present in both data-

sets. Because truly independent evaluation data seldom exist, spatially struc-

tured partitioning represents one of few means available to identify overfi tting 

to bias, rather than just to noise in calibration datasets. Still, if biases permeate 

all of the occurrence data collected in a particular fashion—for example, many 

biologists accumulate the bulk of their records along roads and roads may con-

sistently follow valleys (Reddy and Dávalos 2003)—such pervasive biases will 

not be eliminated even by spatially stratifi ed subsampling. Among the data-

partition strategies presented earlier referring to random splits, K-fold cross 

validation lends itself better to implementation with spatially structured splits 

than do random strategies.

Another potential drawback exists with spatially structured partitions, requir-

ing care in their design and interpretation. By partitioning occurrence records 
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spatially, the investigator may inadvertently insert artifi cial sampling bias  into 

the calibration data, at least in G-space, and possibly in E-space as well (a po-

tential solution to this problem is via calculation of p-maximum solutions, 

maximizing distances among data points, in both geographic and environ-

mental space; Araújo et al. 2001). A modeling technique robust to such biases 

would perform well in evaluations of ability to predict records from regions 

from which no calibration records were available (Peterson et al. 2007c), which 

is precisely the reason why spatially structured partitions are desirable. Either 

explicitly or implicitly, lack of sampling bias represents an assumption of all 

techniques for modeling ecological niches: extreme geographic subdivision for 

calibration versus evaluation may violate this assumption more than what is 

reasonable for the purpose of allowing the investigator to identify overfi tting  to 

both bias and noise. Such artifi cial sampling bias introduced by spatially struc-

tured partitions is reinforced with successively larger numbers of occurrence 

records.

An optimal balance between relative size of the geographic shapes on one 

hand and numbers of occurrence records on the other must exist. Moderately 

sized geographic regions for partitioning may be desirable over large ones 

(e.g., a checkerboard approach rather than division into geographic halves; Pe-

terson et al. 2007c). Similarly, evaluations based on spatially structured parti-

tions will likely prove most realistic when numbers of occurrence records are 

not excessively large. For datasets with larger numbers of occurrence records, 

smaller subregions should be employed to avoid introducing excessive artifi cal 

sampling bias; for smaller datasets, larger subregions will likely be more ap-

propriate to ensure that suffi cient artifi cial sampling bias has been introduced. 

More generally, the objective should be to introduce a level of sampling bias 

that mimics that which is suspected in the overall occurrence dataset. Such 

decisions will invariably be specifi c to the particular situation at hand, and this 

area of research clearly remains open, with much empirical testing and explo-

ration still needed.

EVALUATION OF PERFORMANCE

Many quantitative measures exist for evaluating model performance , which can 

be divided into two categories: those designed for use with binary predictions 

versus those relevant to nonbinary (e.g., continuous or ordinal) predictions, 

often referred to as “threshold-dependent”  and “threshold-independent” mea-

sures , respectively (Fielding and Bell 1997). Because threshold-independent 

short
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measures are frequently extensions of metrics used for evaluation of binary 

predictions, we begin by discussing the latter.

In terms of our general principles, it is useful to think in terms of models, 

f̂ , and their corresponding loss functions . Evaluation of binary predictions is 

based either on modeling methods that produce a single, binary prediction, or 

from a binary prediction that derives from application of a threshold u to a con-

tinuous model (see chapter 4). In contrast, threshold-independent approaches 

in essence evaluate a whole nested set of binary models, f̂u, one corresponding 

to each value of the threshold u.

Most performance measures for binary models derive from elements of a 

matrix typically termed the “confusion matrix ” (Fielding and Bell 1997; some-

times simply called an error matrix). The confusion matrix relates rows sum-

marizing predicted presence and absence to columns indicating the true status 

(table 9.1). The four cells of the matrix thus indicate distinct combinations 

of prediction versus reality; the literature regarding confusion matrices uses by 

convention the letters a, b, c, and d to refer to particular elements of the matrix 

(note that these designations overlap with variable designations used elsewhere 

in this book for other purposes).

Elements a and d of the confusion matrix denote pixels corresponding to 

correct predictions: a represents known distributional areas correctly predicted 

as present, and d refl ects regions where the species has not been found and 

which are classifi ed correctly by the model as absent. Elements c and b, in 

contrast, indicate prediction errors (fi gure 9.1). Element c denotes omission 

error : cells of known distribution predicted absent by the model. Element b 

indicates commission “error ”: areas from which the species is not known but 

that are predicted present (but recall that commission “error” is complex, in-

cluding both true misclassifi cation and also apparent commission error ; see 

discussion of apparent commission error earlier in this chapter).

Although much of the literature uses the a, b, c, and d notation, to integrate 

with discussions earlier, we present an alternative notation for the confusion 

Table 9.1. Summary of the confusion matrix, 

as used in model evaluations.

 Actual status

  Present Absent

Predicted status Present a b
 Absent c d

short
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matrix and measures that are derived from it (see table 9.1). These measures all 

amount to indicating a specifi c loss function and corresponding rates that are 

the expected values of loss for each combination in the confusion matrix. That 

is, a function L(Y, Ŷ) exists implicitly for each of the four values that (Y, Ŷ) 

can jointly take (table 9.2).

The omission error  rate constitutes a common measure of model perfor-

mance, calculated from the confusion matrix as c/(a � c). It provides the pro-

portion of positive test occurrence records (i.e., localities of known presence 

for the species) falling outside the area predicted for the species. Because it is 

a proportion, it ranges from 0 to 1. Omission error rates also can be thought of 

as a measure of the rate at which the model incorrectly predicts absence, and 

hence its alternate name, the false negative rate  (Fielding and Bell 1997). The 

omission error rate equals 1 minus a quantity called “sensitivity ,” which is the 

Figure 9.1. Illustration of the confusion matrix in G-space, showing the two sorts 

of error that are possible in such models. Open shapes indicate areas occupied by 

the species GO. Gray areas indicate areas predicted by a model as suitable. The 

occurrence data G
data

 are as follows: dash � absences both of the species and of 

predicted suitable conditions (� d ); X � presences of the species correctly pre-

dicted (� a); open squares � presence of the species incorrectly predicted as ab-

sent (� c); open circles � absence of the species in spite of a positive prediction 

(� b).

x

y

True positive

Areas predicted by an ecological niche model

Occupied distributional area, Go

True negative

False negative

False positive
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absence of omission error; “sensitivity” is drawn from the medical literature, 

where confusion matrices are used to indicate the effi cacy of diagnostic tests, 

and will be used later in discussions of threshold-independent approaches. 

Sensitivity shows how responsive the model is to the condition being tested 

for: that is, how well it correctly indicates a positive result when the positive 

condition is true. For example, a perfectly sensitive pregnancy test always re-

turns a positive result when the patient indeed is pregnant. Clearly, we desire 

sensitive models, which would then always predict suitability when the envi-

ronment is suitable.

Virtually all niche modeling applications call for models with zero or low 

omission error rates. Rare exceptions involve cases where the investigator might 

desire a binary model identifying a subset of areas suitable for the species, 

typically the “best” conditions for the species (Peterson 2006c). In addition, 

low but nonzero omission rates may be acceptable and even desirable in cases 

where sink populations, misidentifi cations, or georeferencing errors are likely 

present in the occurrence data (Peterson et al. 2008a). However, for most ap-

plications, low omission error is a necessary (but not suffi cient) condition for a 

good model: a model that predicts the entire study region as suitable has zero 

omission error, but is not a useful prediction. Therefore, in addition to assess-

ing performance using omission rates, evaluations must also test whether the 

omission rate is better than expectations under random predictions (Anderson 

et al. 2002a, Pearson et al. 2007; see the section “Assessing Model Signifi cance” 

later in this chapter).

The commission error  rate is another model performance measure based on 

the confusion matrix, as b/(b � d ). It provides the rate at which negative test 

occurrence records (localities of known or assumed absence for the species) 

fall in pixels of predicted presence for the species. Like the omission error rate, 

it ranges from 0 to 1. Another phrasing of the commission error rate is the rate 

at which the model incorrectly predicts presence, and hence its alternative 

name, the false positive rate  (Fielding and Bell 1997). The commission error rate 

equals 1 minus a quantity called “specifi city”  (the sister term to sensitivity) that 

Table 9.2. Values of the loss function that are implicitly specifi ed when using 

different performance-evaluation measures based on a confusion matrix.

 L(0,0) L(1,1) L(0,1) L(1,0)

Omission error rate, or false negative rate 0 0 0 1

Commission error, or false positive rate 0 0 1 0

Overall misclassifi cation rate, or zero-one loss 0 0 1 1

A general, possibly nonsymmetrical loss 0 0 q 1 – q
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represents the absence of commission error. It shows how specifi c the model is 

to the condition being tested for, or how well it correctly indicates a negative re-

sult when the condition really is absent. For example, a perfectly specifi c preg-

nancy test always produces a negative result when the patient is not pregnant.

As discussed earlier, interpretation of commission error rates is more com-

plex than that for omission error rates, for two reasons. First, few if any data-

sets provide realistic information documenting species’ absences from locali-

ties, leading to apparent commission error. For presence-only datasets, such as 

those derived from information associated with specimens at natural history 

museums and herbaria, absence data simply are not included in the information 

that is preserved. Here, the only way to assess commission is via sampling the 

background (see the preceding discussion), or via assessment of sampling of 

similar species to establish whether sampling has likely been suffi cient to de-

tect the species (see discussions of testing absence in chapter 8). More simply, 

use of commission error rates for presence-only datasets assumes absence for 

background pixels, a false assumption for all pixels where the species is truly 

present, regardless of whether or not we have records of its presence there. For 

most species, unsampled areas represent a substantial and even overwhelming 

proportion of the study region. Even with presence/absence datasets, because 

detection probabilities are generally �1 (MacKenzie et al. 2002), the species 

may truly be present at many sites where the evaluation dataset indicates ab-

sence (see fi gure 5.1), which will infl ate commission error estimates.

Nonequilibrium distributions  are a second factor complicating interpreta-

tion of commission error rates, because many, and potentially all, species do 

not inhabit the entire geographic footprint of their ecological tolerances (see 

chapter 8). Many niche-modeling applications aim to estimate not the realized 

distribution GO, but rather the potential distribution  GP or even GA of the spe-

cies in question. In such cases, if the species fails to occupy suitable areas 

owing to dispersal limitations or biotic interactions (i.e., the distribution is not 

at equilibrium), use of commission error rates will penalize a model for correctly 

predicting suitable conditions there. Therefore, commission error rates should 

be employed only to evaluate predictions of species’ true distributions (occu-

pied distributional areas, GO), in which case minimal commission error rates 

are indeed desirable. Commission error rates should not be applied in circum-

stances requiring estimates of GA or GP, a point that has not been appreciated 

suffi ciently in the broader literature (e.g., McNyset 2005, Elith et al. 2006).

Using the cells of the confusion matrix , several measures can be derived that 

combine omission and commission errors into single overall measures (Field-

ing and Bell 1997). For the same reasons mentioned earlier regarding commis-

sion error rates, however, because they include the contribution of commission 
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error, these measures are valid only for presence/absence evaluation datasets, 

and only when evaluating GO. The overall misclassifi cation rate  constitutes one 

such measure, calculated as (b � c)/(a � b � c � d ). Other, more complex 

measures, such as Kappa and normalized mutual information (NMI), also aim 

to characterize combinations of omission and commission errors (Fielding and 

Bell 1997). However, because of complications introduced by apparent com-

mission error, they are misleading in the same situations as just discussed. 

Kappa, in addition, is strongly infl uenced by the prevalence of the species (i.e., 

the proportion of the study area covered by the species’ distributional area; 

Manel et al. 2001, Liu et al. 2005).

More generally, in performance-evaluation measures that combine omis-

sion and commission, the two kinds of error need not (and probably should 
not) be weighted equally. The last entry in table 9.2 corresponds to an asym-

metric loss  that combines the omission and commission errors, but not neces-

sarily with equal weight. A user may conclude that the loss function of interest 

is asymmetric; if a reason exists for adopting specifi c values, then direct sub-

stitutions for L in all of the preceding expressions for evaluating loss follow 

immediately. The diffi cult question, of course, is what the relative weights (i.e., 

the value q in the table) of the two types of misclassifi cation errors should be. 

This decision is called “loss function elicitation” in the decision-theory litera-

ture, and is neither easy nor straightforward. This diffi culty probably explains 

why this loss has not been considered in the literature explicitly: it is seldom, 

if ever, clear what the cost of a false positive is relative to that of a false nega-

tive, particularly when real absence data are lacking (which they generally are). 

For example, in conservation applications, false positives are associated with 

money lost in protecting a site unnecessarily, but the cost of losing a species by 

not protecting a site is not something easy to describe on a monetary scale. Of 

course, not all costs are described on monetary scales, but the example serves 

to illustrate the complex issues involved. Failing to address this lingering 

problem of balancing the two error components does not make it disappear, 

and no amount of mathematical or statistical reasoning can compensate for this 

failure—as such, use of performance measures assuming equal weights for 

omission and commission error rates is rarely appropriate in niche-modeling 

exercises.

ASSESSING MODEL SIGNIFICANCE

In addition to showing suffi cient performance, a “good” model  should be sig-

nifi cantly better than random predictions. For example, recall the model that 
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predicts the entire study region and shows zero omission (i.e., obtains a high 

performance for that measure), but clearly is not particularly useful. Testing for 

model signifi cance thus comprises a critical element of evaluating binary mod-

els; these tests are one-tailed in nature, since predictions that are worse than 

random are neither desirable nor of interest in niche modeling applications.

Threshold-Dependent Tests 

For presence-only evaluation datasets, the goal is to test whether the model 

predicts positive evaluation occurrence records (localities of known presence 

for the species) better than a random prediction of the same proportional extent 

within the study region. This question corresponds to a binomial situation, be-

cause the model predicts only one of two possible outcomes for each evalua-

tion record: suitable versus unsuitable. The probability of each individual posi-

tive record being predicted correctly (i.e., present) by a random model with the 

same proportional extent of the study region predicted suitable equals the pro-

portion of the study region predicted suitable (e.g., probability of 0.5 for a 

model predicting suitability for half of the study region, probability of 0.25 for 

a model predicting suitability for a quarter of the study region, etc.). The bi-

nomial probability  for the overall test indicates the chance that the total num-

ber of positive evaluation records predicted correctly by the model could have 

been achieved by a random model (Anderson et al. 2002a).

As an alternative to the binomial approach, chi-square test s have been used 

to approximate the binomial probability. Like all chi-square tests, counts are 

used (not rates or proportions). Similarly, when using a presence–absence eval-
uation data set, a chi-square test can be used to assess prediction of both posi-

tive and negative test occurrence records; the contingency table for this test has 

two rows (predicted presence or predicted absence) and two columns (observed 

presence or observed absence), or vice versa. However, a frequent limitation of 

chi-square approaches is the requirement that expected values of all cells in the 

table be ≥5 (Sokal and Rohlf 1995); as such, these approaches are best applied 

in situations with medium-to-large sample sizes.

Assessing signifi cance becomes more complicated with approaches that 

include multiple iterations of model calibration. With the standard n – 1 jack-

knife strategy suggested for small sample sizes, signifi cance can be assessed 

when using a presence-only evaluation dataset via a binomial test in which the 

probability of success varies between iterations (Pearson et al. 2007). To our 

knowledge, similar n – 1 jackknife procedures do not yet exist for presence/

absence evaluations, nor for other methods of creating repeated divisions of 

occurrence records into calibration and evaluation datasets (e.g., K-fold cross 

partitioning, n – d jackknife, bootstrapping). Unless already present in the lit-
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erature, signifi cance tests need to be taken from the general statistics literature 

and modifi ed as necessary for these other methods, likely as modifi cations of 

the binomial test statistic for a single split sample.

As with any statistical test, the power to detect statistical signifi cance (i.e., 

to reject correctly a false null hypothesis) varies according to the data at hand. 

First, small sample sizes of occurrence records reduce statistical power. Sec-

ond, statistical power depends on how extensive the prediction is within the 

study region. For example, tests of omission with presence-only evaluation 

datasets have reduced statistical power as models predict presence across in-

creasing proportions of the study region, because the expected probability of 

predicting individual test occurrence records equals the proportion of the study 

region predicted present. One consequence is that many more test occurrence 

records are necessary to demonstrate signifi cant improvement over random for 

models predicting broad presence in the study region; in fact, these factors cre-

ate the appearance of better predictions for species with small ranges (Her-

nandez et al. 2006). This effect also explains why signifi cance on its own does 

not constitute a suffi cient condition for a good model: models may be signifi -

cant without having acceptable performance. For example, a model that shows 

a very restrictive prediction for a species, but correctly predicts half of posi-

tive evaluation records, may be signifi cantly better than random, yet its omis-

sion rate of 0.5 would not be considered as acceptable performance in most 

applications.

Threshold-Independent Tests  

These approaches, also usually based on measures derived from the confusion 

matrix, can be used to evaluate nonbinary predictions across various thresh-

olds. Here, the user does not have to choose a threshold by which to convert the 

prediction to a binary output, so these approaches are often termed threshold-

independent methods—however, a cost accompanies this advantage, as will be 

discussed in detail later. Because model output types vary (see chapter 7), the 

appropriate evaluation strategy and/or interpretation of evaluations can vary as 

well. Nonbinary predictions may be either continuous or ordinal, with higher 

values indicating higher suitability for the species in either case. Some of these 

outputs aim to provide predictions in which the value is proportional to environ-

mental suitability or probability of presence (Ferrier et al. 2002), while others 

offer only a relative ranking of suitability. Hence, it is important to distinguish 

between evaluation tactics that measure how well model output matches suit-

ability or probability of presence among map pixels (goodness-of-fi t evalua-

tions) versus evaluation approaches that do not (i.e., rank-based evaluations that 

measure only the performance of the model in ranking presence higher than 
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absence—or background or pseudoabsence—pixels correctly). We begin with 

considering the latter, which are the most commonly used approaches.

All rank-based evaluation approaches known to us involve receiver operat-

ing characteristic  (ROC) plots. ROC plots relate two measures derived from 

the confusion matrix, sensitivity and specifi city: sensitivity on the y-axis versus 

1 – specifi city on the x axis (fi gure 9.2). As outlined earlier, specifi city  equals 

1 – (commission error rate), and sensitivity  equals 1 – (omission error rate). 

Hence, specifi city indicates absence of commission error, and sensitivity rep-

resents absence of omission error. Therefore, ROC plots derive from a plot of 

lack of omission error on the y axis versus commission error on the x axis.

In contrast to the threshold-dependent evaluations earlier, which calculate 

error rates at particular thresholds of the prediction, ROC curves derive from 

multiple measures of omission and commission error rates across the range of 

strengths of the prediction. The two resulting rates are plotted for each thresh-

old across the ramp of predictive values, and the points are connected to form 

a curve. For a continuous prediction, the ROC curve typically contains one 

point for each test instance, while for discrete (ordinal) predictions, ROC curves 

typically contain one point for each different predicted value. ROC analyses 

have a long history in distributional modeling with presence/absence evalua-

tion datasets (Boyce et al. 2002).

Recent work has addressed use of ROC curves in cases where absence data 

are unavailable, allowing their application to presence/background evaluation 

Figure 9.2. Example of a receiver operating characteristic (ROC) curve, plotting 

sensitivity against 1 – specifi city. The expected performance of a random classifi er 

(for presence/absence evaluation data) is shown as a broken line, whereas the ob-

served performance in this hypothetical example is shown as a solid line.
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data at least under some circumstances (Wiley et al. 2003, Phillips et al. 2006, 

Peterson et al. 2008a). Here, large samples of background or pseudoabsence 

pixels are used for calculating commission error (both real and apparent) for 

the x axis of the ROC curve. With large samples of background pixels, esti-

mates of commission error converge on the proportion of the overall study area 

predicted present by the model at that threshold (Anderson et al. 2003, Phillips 

et al. 2006, Peterson et al. 2008a). Interpretation of such presence/background 

ROCs differs from traditional usage with presence/absence evaluation data (see 

the following).

A model that discriminates well between presences and absences would 

have low omission (high sensitivity) and low commission (high specifi city; see 

fi gure 9.2). Such models would be plotted in the upper portion and the left 

portion of the ROC plot, respectively. The endpoints of the full curve are by 

necessity (0, 0) and (1, 1). As such, a model with excellent discrimination be-

tween presences and absences produces a curve that increases quickly along 

the y axis from (0, 0) to very near to (0, 1), and then continues to (1, 1). The 

area under the curve  (AUC) of an ROC plot represents an overall measure of 

the model’s performance across all thresholds and strengths of the prediction. 

Specifi cally, AUC ranges 0–1, and summarizes the model’s ability to rank pres-

ence localities higher than absence localites (or higher than a sample of ran-

dom background pixels, in the case of presence/background testing). Although 

high AUC values are desirable, it should be noted that, for reasons associated 

with apparent commission error, the maximum achievable AUC is below unity 

in presence/background evaluations (Wiley et al. 2003, Phillips et al. 2006).

In deriving global measures of model performance across multiple thresh-

olds, signifi cance measures are obtained as well. Indeed, AUC carries with it 

an interpretation under a null hypothesis because it can be used as a test statis-

tic. The value AUC � 0.5 corresponds to the expected performance of a ran-

dom classifi er, although this interpretation rests on assumptions that must be 

considered carefully. First, an implicit assumption is a situation of zero-one 

loss (symmetric loss ), which is not often suitable to the details of evaluation 

datasets. That is, an AUC � 0.5 indicates signifi cance only for true presence/

absence evaluation data, a critical point that is frequently misunderstood. Sec-

ond, the desirability of quantifi cation of model predictive behavior over all 

possible thresholds is assumed. Given the data and questions at hand, these 

assumptions may frequently not be reasonable.

As mentioned earlier, ROC tests a different null hypothesis when presence/

background evaluation datasets are used. In this arena, the problem is to distin-

guish presence from random, rather than to separate presence from absence 

(Phillips et al. 2006), so interpretations also must differ. The difference springs 
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from the point of asymmetric loss , with the consequence that apparent com-

mission error overestimates commission error rates, moving the AUC curve 

artifi cially to the right (fi gure 9.3). This estimation bias produces an artifi cially 

low AUC value (see the preceding discussion), particularly for models predict-

ing high suitability across large portions of the study region. In contrast, mod-

els indicating high suitability only for small proportions of the study region 

lead to high (and infl ated) AUC values, an unfortunate artifact caused by back-

ground pixels being interpreted as negative results, which coincide with the 

low predictions throughout the study region (Lobo et al. 2007).

Some statistical interpretations are clear if the assumptions mentioned ear-

lier are met, and additional rules of thumb for interpreting AUC values under 

some circumstances can be outlined. In ROC, AUC � 0.5 is the expected per-

formance by a random classifi er, and AUC values �0.5 correspond to predic-

tions that are worse than random and are not of interest. For presence/absence 

evaluation datasets, AUC values �0.5 are generally classed into (1) poor pre-

dictions (0.5 to 0.7); (2) reasonable predictions (0.7 to 0.9); and (3) very good 

predictions (�0.9; Swets 1988), for interpretation of model quality based on 

the value of AUCs from evaluations. However, we emphasize that these guide-

lines are subjective, and contingent on what one is trying to predict: if the goal 

is to predict GA or GP, measures that penalize models for predicting suitable 

areas that lack presence of the species because of factors related B and/or M 

are not appropriate. Furthermore, these guidelines are not relevant for ROCs 

based on presence/background evaluation data, where maximum achievable 

AUC values depend on the proportional presence of the species and its poten-

tial distribution across the study region; hence, such AUC values are species- 

and region-specifi c (Wiley et al. 2003, Phillips et al. 2006). For these reasons, 

convenient rules of thumb do not exist for presence/background AUCs. For 

AUCs calculated with presence/background evaluation data, comparisons must 

be controlled carefully, and signifi cance is assessed via bootstrapping or other 

randomization approaches (Raes and ter Steege 2007, Peterson et al. 2008a).

Hence, with presence/background evaluation datasets, AUCs cannot be used 

to erect valid universal comparisons of model performance, for several reasons. 

First, AUCs are not comparable among species, because different species’ po-

tential distributions will cover different proportional areas of the study region 

(Phillips et al. 2006). Similarly, comparisons of AUCs between regions will 

not be valid, because potential distributional areas of species inevitably cover 

different proportions of different regions (Lobo et al. 2007). Even comparisons 

between models built using the same occurrence data in the same region but 

based on different model-building algorithms and approaches may not be valid 

(see the following), depending on the aim of the evaluation. Differences of 
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Figure 9.3. Illustration of the effects of presence/absence versus presence/back-

ground data as bases for model calibration, as well as of different hypotheses re-

garding mobility constraints (M) in model evaluation via receiver operating char-

acteristic tests using the two kinds of data. (Note that models are not necessarily 

calibrated and evaluated using the same kinds of data.) Calibration with presence/

absence data from throughout G will lead to exclusion of invadable areas GI from 

the model’s predictions, whereas presence/background data will not, because 

niche models commonly identify areas that are suitable according to abiotic and 

biotic factors, but that are not inhabited due to dispersal limitations (i.e., they are 

not within M). Similarly, with presence/background evaluation datasets, pixels cor-

rectly predicted actually increase the apparent commission error (1 – specifi city). 

These two factors act similarly to shift the ROC curve artifi cially to the right, reduc-

ing the estimate of model discriminatory power. In the worst case, if defi nition of 

the area for testing is ad hoc, and not linked to a hypothesis of M, almost any predic-

tion can be made to appear signifi cant simply by increasing the area of analysis.
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opinion or variation in de facto usage exist in the literature regarding the appro-

priateness of AUCs in such comparisons either because different researchers 

may desire evaluation of different properties of the prediction (see second as-

sumption earlier), or simply because of misunderstanding of the methodology 

and its assumptions. More generally, AUC is inappropriate in many compari-

sons of global model performance because of artifactual variation in AUC values 

related to incomplete predictions across much of the spectrum of the ROC plot 

by some modeling algorithms (Peterson et al. 2008a). It is worth noting that the 

problems mentioned in this paragraph are also present (but perhaps less se-

vere) in evaluations with presence/absence test datasets (see the discussion of 

instances of apparent commission error caused by incomplete sampling, non-

detection of species, and nonequilibrium distributions, earlier).

Despite the many situations in which AUCs are not valid with presence/

background evaluation datasets, a few reasonable uses of this approach do exist. 

For example, AUCs are appropriate in comparisons of performance between 

and among different training occurrence datasets (e.g., spatially fi ltered versus 

unfi ltered occurrence datasets), different environmental datasets (e.g., climatic 

data versus remotely sensed data), and different parameterizations of a given 

modeling algorithm (e.g., Phillips and Dudík 2008). Furthermore, AUC can 

be useful and appropriate for more diverse comparisons, for example among 

model-building algorithms and approaches (e.g., BIOCLIM versus generalized 

linear models) when a global comparison across the full spectrum of prediction 

is desired—see the following (Peterson et al. 2008a).

Some of the concerns about AUCs can be addressed via modifi cations of 

traditional ROC approaches. Specifi cally, one can consider the area under only 

a selected portion of the curve, thus emphasizing subsectors of ROC space 

(Dodd and Pepe 2003, Peterson et al. 2008a). Considering omission error (i.e., 

the y axis), many investigators will want to ignore performance at thresholds at 

which models show high omission rates, rather than to create a “global” perfor-

mance measure (Lobo et al. 2007, Peterson et al. 2008a), so analysis is limited 

to portions of the ROC curve that provide predictions with acceptable levels of 

omission error (fi gure 9.4). Similarly, regarding proportional area predicted 

present (i.e., the x axis), two or more models may differ in whether their pre-

dictions cover the entire spectrum or just a subset of it; if evaluation of perfor-

mance is desired over the portion of the spectrum where both models actually 

make predictions, the ROC plot must be restricted to the area in which the 

models actually make predictions to that area (fi gure 9.4). Another option is to 

weight the two axes of the plot individually, thus changing the dimensions of 

the plot, but providing a means of weighting omission and commission errors 

differentially (fi gure 9.4). This sort of modifi cation of spaces over which ROC 
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plots are developed and interpreted can infl uence results dramatically (Peter-

son et al. 2008a).

As mentioned earlier, ROC plots assess the ability of models to rank pres-

ences versus absences correctly; other evaluation options include quantitative 

measures of suitability via goodness-of-fi t approaches. A simple correlation 

approach  has been used to evaluate the fi t of model output to the likelihood of 

observing the species, calculating pixel-by-pixel Pearson product-moment 

correlations between model predictions and evaluation records in a presence/

absence evaluation dataset (absence � 0, presence � 1; Ferrier et al. 2002). It 

is a parametric test (in contrast to the nonparametric AUC), evaluating both 

Figure 9.4. Illustration of modifi cations to the “traditional” receiver operating 

characteristic plot testing approaches to make applications to ecological niche 

modeling challenges more appropriate. Sectors of the ROC plot are eliminated 

because the model makes no explicit discrimination in predictions, and/or because 

of specifi c tolerance regarding error in the occurrence data. The right-hand portion 

of the fi gure illustrates how a traditional ROC plot can be modifi ed to weight omis-

sion and commission errors differentially, based on consideration of an expected 

amount of error inherent in input occurrence data, E, as a means of identifying 

portions of the ROC plot that are of interest and those that are not. Adapted from 

Peterson et al. (2008a).
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performance and signifi cance (Lobo et al. 2007). For some presence/absence 

calibration techniques, this correlation assesses the fi t to probability of occur-

rence, but for presence-only, presence/background, and presence/pseudoabsence 

calibration occurrence data, unless GO � GP � GA, it would assess fi t only to 

relative environmental suitability or to probability of suitable environmental 

conditions (Ferrier et al. 2002; see chapter 7). Correlations and AUC have pro-

duced similar rankings in recent comparisons of modeling techniques evalu-

ated using presence/absence data (Elith et al. 2006, Lobo et al. 2007, Phillips 

and Dudík 2008). Unfortunately, given all of the complications regarding ap-

parent commission error discussed earlier and in chapter 8, this method is in-

appropriate for application to any other type of evaluation data (presence-only, 

presence/background, and presence/pseudoabsence).

When application of the correlation approach is appropriate, in interpreting 

correlation coeffi cients, it is important to note that even excellent models will 

not achieve values of 1, which may hinder such comparisons. First, although 

model suitability values are often continuous, evaluation data are binary, which 

can limit the fi t of the relationship. Also, pixels holding evaluation data will 

seldom exist in equal frequencies across the ramp of predictions: if proportion-

ately more evaluation data are concentrated in the middle of the suitability 

spectrum, for example, it will decrease the correlation coeffi cient artifactually. 

Hence, even for presence/absence evaluation datasets, correlation should not be 

used in comparisons among species and regions, in spite of its recent applica-

tion to such comparisons (Elith et al. 2006).

FUTURE DIRECTIONS

We suspect that the reader will already have realized that model evaluation is 

a part of this emerging fi eld that is in particular need of further development. 

Major misunderstandings exist in the fi eld, and we have tried to explain many 

of the pitfalls of various techniques. In addition, major rearrangements and 

shifts in these methodologies have been proposed recently, and we envision 

that more will be forthcoming. As such, we lay out in this fi nal section a series 

of avenues that we consider important for exploration and development.

Model Evaluation in Environmental Space

The discussions developed earlier lead us to explore the possibility that eco-

logical niche models should better be evaluated in E-space rather than across 

geography, as is customary. In theory, at least, E-space-based evaluations have 

the advantage of speaking directly to what is being modeled (i.e., the ecologi-
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cal niche), and in reducing effects of mobility and dispersal ability (i.e., the M 
in the BAM diagram). Whereas testing in G-space is useful for some applica-

tions, such as when the focus is on modeling spatial distributions rather than 

ecological niches, given that the most important aspects of use and application 

of niche models are driven by their representation in environmental space, 

these models ultimately should be evaluated in environmental space. This point 

has been appreciated in the literature only rarely (see, for example, Peterson 

et al. 2007d).

One justifi cation for this assertion is the point made in chapter 2, that the 

number of cells in the geographic grid that is our study area (|G|) may exceed 

the number of environmental combinations (|E|) represented across the same 

region, particularly when few or relatively simple environmental variables are 

used as the basis for model development. As a consequence, |G| ≥ |E|, and the 

degree of inequality between the two will depend on the complexity of both the 

landscape in question and of its environmental characterization. When |G| � |E|, 
grid pixels will exist across G that have exactly the same vector of environmen-

tal values e→g: in such cases, pixels would be counted as independent when they 

are not, and statistical power would thus be infl ated artifi cially in light of the 

increased sample sizes, if the goal of the modeling exercise is to characterize 

the environmental dimensions of ecological niches.

We can develop threshold-dependent  and threshold-independent  evalua-

tions of performance and signifi cance in E analogous to those described earlier 

for G. In this sense, a threshold-dependent, E-based analog to the cumulative 

binomial probability approach would be as follows. The binomial is based on 

k, the number of successes, out of n, the number of trials, and p, the probability 

of a success in a given trial. Whereas p was estimated as |η(μ(G�, E))/ |G||, or 

the proportion of grid cells in the overall study area predicted present, we must 

seek an analog in environmental space. We use |η(μ(G�, E))/|(M)||, which is 

the number of elements (environmental combinations) in the niche space cor-

responding to the geographic prediction of the model divided by the number of 

elements in the niche space corresponding to the entirety of M.

Translating symbology into more accessible prose, we are attempting to 

estimate the probability that a random point in E-space will fall into the set of 

environments predicted as suitable for the species in question. We assume that 

the E-space has been reduced in dimensionality and standardized to avoid arti-

fi cial infl ation of distances across different sectors of the space (see chapter 6). 

The researcher must then make explicit assumptions regarding the dimensions 

of M, the geographic area accessible to the species (see chapters 3 and 8; see 

also the following discussion). The E-space associated with this assumed M 

is η(M); the number of environmental combinations in this niche space, or its 
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cardinality, is |η(M)|. This number is used along with the number of environ-

mental combinations in the niche space associated with the geographic predic-

tion of suitability by the model (|η[μ(G�, E)]|) to estimate the probability of a 

success p. (Of course, a threshold would have to be chosen and applied to con-

tinuous or ordinal predictions, as discussed earlier.) Combining this estimated 

p with the number k of the n evaluation points falling inside the predicted area 

leads to a cumulative binomial probability for any binary prediction.

For threshold-independent testing, a ROC curve can be developed that 

plots proportional success in predicting independent evaluation records (y axis) 

against the proportion of E predicted present |η[μ(G�, E)]/|η(M)||. As earlier, 

in many cases, the research question at hand may require that this ROC curve 

be reduced to only the range of proportions of E predicted by the models in 

question (x axis), and to the range of predictive success considered to be useful 

in that particular application (y axis; extending Peterson et al. 2008a).

Although these procedures are equivalent to G-based testing when |G| � |E|, 
when |G| � |E| testing in E-space has conceptual advantages over the usual 

approach, in that environmental variation is emphasized, and geographic sites 

presenting identical (or nearly identical) environments are not overcounted. 

Indeed, we suspect that an improvement to the preceding suggestions that are 

based on raw counts of environmental combinations would be to base calcula-

tions of p on frequency-based abstractions of E-space. That is, E-space could 

be divided into equal-frequency bins, and probabilities calculated based on 

proportional occurrence in these bins. Such an approach would speak to the 

odd differences in density of pixel representation that are frequently observed 

across E-spaces.

Explicit Presentation of M
Although treated conceptually earlier, another key step forward in improving 

niche model evaluations will be that of testing models only within the spatial 

realm and associated environments defi ned by M (and of course the area actu-

ally sampled); a fi rst major step in development of these thinking frameworks 

has now been published (Barve et al. 2011). Put simply, the only sites and en-

vironments relevant to niche model evaluation are those that the species has 

“sampled”—these sites are either within the species’ niche or not, but M is the 

critical area containing these relevant sites. This restriction has rarely been ap-

preciated in the niche-modeling literature, in spite of its critical importance—

indeed, almost any model prediction can be “made” signifi cantly better than 

random if the area of analysis is simply expanded, which tends to add unsuit-

able areas for the species (consider this situation as parallel to that depicted in 

fi gure 9.3). Stating the issue more explicitly, presence or absence of the species 
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in areas outside of M is patently irrelevant to the validity of the model, yet how 

this critical area has been estimated (if it has been considered at all) is rarely if 

ever stated explicitly in niche-modeling applications. This idea of M as a guid-

ing area in niche analyses becomes clear when designing indices based on the 

idea of marginality (Doledec et al. 2000, Hirzel et al. 2002). Similar principles 

apply to B when the Eltonian Noise Hypothesis is not true; alternatively, mod-

els can be processed to consider the effects of M and B (see chapter 8) before 

conducting evaluations (see Anderson and Raza 2010 and Barve et al. 2011).

Additional Considerations

Myriad other areas relevant to model evaluation require careful consideration 

and analysis, both theoretically and methodologically. Some of these areas re-

late to issues of data, whereas others involve development of new quantitative 

evaluation methods. With regard to data, improvements are needed for both 

occurrence data and environmental data.

First, researchers should address criteria for reducing bias in occurrence 

datasets used for evaluating models. Here, spatial autocorrelation (i.e., biases 

in G-space) is paramount. Records that lie close together are not independent 

of calibration data or of other records in the evaluation dataset. “Close to-

gether,” of course, is an ambiguous term dependent on resolution, and implic-

itly also on the heterogeneity of the environment and dispersal ability of the 

species. Furthermore, biased data (i.e., that result from biased biological sam-

pling in G-space) may also be biased in E-space. One possible avenue for 

ameliorating these problems is via spatial fi ltering of occurrence records: for 

example, if many records of a species are clustered spatially due to clustered 

sampling, occurrence records could be fi ltered by removing records constitut-

ing clusters of lying close to one another within a particular distance (Araújo 

and Guisan 2006). Determination of suitable distances for such fi ltering could 

be based on the spatial autocorrelation structure of the landscape and the par-

ticular environmental dimensions to be used (Veloz 2009), but further explora-

tion and experimentation is required to take into account biological realities 

such as individual movements.

Second, further work is needed regarding selection of strategies for spatially 

structuring evaluation data . Such partitions are independent of calibration da-

tasets, subject to certain assumptions discussed earlier, and as such may allow 

researchers to detect overfi tting to sampling bias and to tune models adequately. 

Such approaches also represent one of few avenues to development of detailed 

tests of model transferability (Araújo and Rahbek 2006, Peterson et al. 2007c), 

since evaluation datasets from other time periods are rare. However, care must 

be taken to structure partitions such that they mimic amounts of sampling bias 
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likely present in the overall occurrence dataset, so experimentation toward 

guidelines for such choices is needed.

Despite the growing body of literature regarding quantitative evaluations of 

model performance, much work remains in this area. Major areas needing ad-

vances include characterization and consideration of uncertainty in model pre-

dictions and new tests for signifi cance (see preceding). Regarding uncertainty 

in predictions, some papers have discussed the steps in the modeling process 

at which uncertainty enters the picture (Heikkinen et al. 2006, Araújo and New 

2007). Similarly, methods for assessing model signifi cance apparently remain 

lacking for many of the more-complicated strategies for partitioning occur-

rence records into calibration and evaluation datasets for niche modeling, such 

as K-fold partitioning, n – d jackknifi ng, and bootstrapping. Ideally, for exam-

ple, methods comparable to that developed by Pearson et al. (2007) would be 

available for each of these data partitioning strategies.

Other “next steps” may change model evaluation more drastically. First, a 

clear understanding of best practices for differential weighting of omission and 

commission error in model evaluation would circumvent many problems of ap-

parent commission error, while still allowing some evaluation of commission. 

Similarly, processing geographic predictions to take into account nonequilib-

rium distributions before evaluation would permit many evaluations that are not 

appropriate currently (see preceding discussion of evaluation within M).

Ultimately, we suspect that model evaluation may evolve in directions not 

particularly related to where the fi eld lies currently. Certainly, evaluating mod-

els in ecological dimensions is a possibility that offers distinct advantages. 

Beyond that, however, we see considerable promise in evaluation procedures 

that use randomizations to characterize intrinsic variation in model develop-

ment, as has been described for niche comparisons (Warren et al. 2008). Fi-

nally, some promise lies in use of null models, as has recently been developed 

to assert that bird species’ distributions are not frequently determined by cli-

matic factors (Beale et al. 2008, although we would argue that this particular 

implementation is inappropriate; see Araújo et al. 2009, Peterson et al. 2009a, 

Jiménez-Valverde et al. 2010). Comparisons against null models, once prop-

erly implemented, however, may offer additional insight for evaluation of niche 

models.

SUMMARY

Perhaps the most complex set of issues regarding ecological niche modeling 

revolves around the process of evaluating the predictions. This fi eld is also—
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we believe—among those in which error and misconception are most prevalent 

in the literature to date. Perhaps the most critical point is that the weights ac-

corded to errors of omission versus errors of commission should not generally 

be balanced in model evaluation: presence data are generally trustworthy (with 

some exceptions), whereas absence (or background or pseudoabsence) data in 

many or perhaps even most cases do not signify true absences. As a result, 

model evaluation procedures must be considered carefully to avoid traps that 

may be seriously misleading. Although evaluation strategies vary, occurrence 

data typically must be split into calibration versus evaluation subsets—this 

subsetting can be conducted randomly, or can be stratifi ed spatially, temporally, 

or by other means. Model evaluation consists of quantifying performance (e.g., 

measuring omission and commission error rates), versus testing model signifi -

cance (i.e., often in comparison with a random model). Two other important 

distinctions are between threshold-dependent approaches (e.g., omission) ver-

sus threshold-independent approaches (e.g., AUC/ROC) and between ranking 

approaches (e.g., AUC/ROC) versus those that assess goodness-of-fi t (e.g., cor-

relation). In all evaluation exercises, consideration of principles of the BAM 

diagram is key, in order to evaluate models in a study region where biological 

realities match assumptions, just as in selecting the study region for model 

calibration.

09peterson.150_182.indd   18109peterson.150_182.indd   181 6/8/11   8:49 PM6/8/11   8:49 PM



PAG E  1 8 2  I S  B L A N K

09peterson.150_182.indd   18209peterson.150_182.indd   182 6/8/11   8:49 PM6/8/11   8:49 PM



Part III

APPLICATIONS

10peterson.183_188.indd   18310peterson.183_188.indd   183 6/8/11   8:50 PM6/8/11   8:50 PM



PAG E  1 8 4  I S  B L A N K

10peterson.183_188.indd   18410peterson.183_188.indd   184 6/8/11   8:50 PM6/8/11   8:50 PM



C H A P T E R  T E N

Introduction to Applications

So far in this book, we have set out a theoretical framework for modeling eco-

logical niches and estimating abiotically suitable, potential, and occupied dis-

tributional areas (chapters 2 to 4). Then, in a more practical mode, we have 

described issues related to the practice of modeling, including the particulars 

of occurrence and environmental datasets (chapters 5 and 6), aspects of how to 

estimate different niches using diverse correlational modeling methods (chap-

ter 7), the process of modifying raw model predictions to estimate geographic 

distributions (chapter 8), and methods by which to evaluate model performance 

and signifi cance quantitatively (chapter 9). In this fi nal section of the book, we 

describe a range of applications of these approaches, which include challenges 

in biogeography, conservation biology, ecology, evolutionary biology, and pub-

lic health.

Before discussing particular applications in detail, however, it is important 

to refer back to the theoretical framework presented earlier in the book—indeed, 

it is crucial to understand the theory behind the models, if one is to apply them 

appropriately. In chapters 3 and 7, we saw that correlative models lacking true 

absence data are unlikely to capture either the occupied niche (EO) or the 

scenopoetic existing fundamental niche (EA) perfectly; rather, these models 

estimate that portion of the niche represented by known occurrence records, 

which is likely to fall somewhere between the two extremes. Similarly, we saw 

that, when projected onto geographic space, correlative models identify parts 

of the abiotically suitable (GA) areas or even, in some cases, only the occupied 

area GO; in most cases, these models appear to estimate more than GO, likely 

including much of GI. The observation that ecological niche models are not 

likely to predict the full extent of either GO or GA has been cited as a critical 

limitation of correlative modeling approaches (Woodward and Beerling 1997, 

Lawton 2000, Hampe 2004). In this section of the book, however, we illustrate 

how these methods can be applied to interesting challenges to yield highly use-

ful results, provided that the researcher understands exactly what is being esti-

mated based on which data.

short
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Let us consider some potential uses of the types of predictions in G illus-

trated in fi gure 10.1. Of course, this scenario is idealized, whereby we assume 

that models fi t neatly to known occurrence records, that occurrence records are 

sampled only from GO and in a representative manner, and that none of the 

other complications described in chapter 7 exists. Nonetheless, as we discussed 

earlier, this illustration characterizes three types of prediction that may be ob-

tained. First, environmentally informed spatial interpolations “fi ll the gaps” 

around known occurrence localities, thus providing an improved estimate of 

the occupied area GO that is likely more informative than a minimum convex 

polygon based on coordinates, or than other spatial approaches that do not take 

underlying environmental variation into account (see predicted area labeled 1 

in fi gure 10.1; Getz and Wilmers 2004, Mace et al. 2008). Furthermore, if pre-

dicted areas that are isolated from known occurrences by dispersal barriers are 

removed (see chapter 8; Peterson et al. 2002b), then model predictions provide 

a further improvement to estimates of GO. This prediction may be useful, for 

example, in conservation planning (see chapter 12). Notice that we are not ex-

pecting the model to predict the full extent of GO, but the approach certainly 

yields more information than is available from raw occurrence records alone 

(Rojas-Soto et al. 2003).

Second, we move to spatial transferability predictions, which identify parts 

of the occupied area GO, or even GP or GA, for which no occurrence records 

have been collected (i.e., this part of GO or GP is unknown). Although the 

model does not predict areas of GO that have environmental conditions not 

represented among known occurrence records, this type of prediction (labeled 

2 in fi gure 10.1) can be used to guide fi eld surveys toward areas with high prob-

abilities of holding new occurrence records. Accelerating discovery of unknown 

populations in this way has already proven particularly useful in landscapes 

where species’ distributions are poorly known (see chapter 11). Similarly, this 

approach holds considerable potential for identifying unknown vector or reser-

voir populations of zoonotic diseases (see chapter 14).

Third, an extension of this reasoning (see fi gure 10.1) is that of estimating 

the portion of the abiotically suitable area (GI ⊂ GA) that is environmentally 

similar to sites where the species is known to occur, but which is not necessar-

ily inhabited (see predicted area 3 in fi gure 10.1). This area is the invadable 

distributional area GI. This type of prediction can be used to identify sites 

where a species may become invasive if it overcomes dispersal barriers and 

possible biotic barriers (see chapter 13). Such predictions can also be useful for 

identifying sites suitable for reintroduction of endangered species (see chapter 

12). Of course, niche models cannot be expected to identify the full extent of 

GA because areas probably exist under conditions that are abiotically suitable 
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Figure 10.1. Hypothetical example of the process of modeling ecological niches 

from observed presences. Observed presences G� are shown as �’s; the occupied 

distributional area GO and the occupied niche space Eo are shown as gray shading; 

and the abiotically suitable area GA and scenopoetic existing fundamental niche 

EA are shown as nonbold open outlines (as in fi gure 3.4). The bold shape encloses 

the areas and environments reconstructed by the hypothetical model as suitable, 

given the available observed presences. Labels 1 through 3 refer to different types 

of predictions yielded by the model, as explained in the main text. Reproduced 

from Pearson (2007).
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but not represented by known occurrence records; still, again, these models 

yield information much more useful than simple occurrence localities alone.

As a consequence, in this fi nal section of the book, we describe critically a 

variety of applications of correlative niche models. We do not attempt to pro-

vide an exhaustive literature review for each application, but rather strive to 

explain and evaluate theoretical principles on which the applications are based, 

and to present selected examples to illustrate the approach. As such, we begin 

each chapter by describing key questions that the models address (Where are 

unknown populations likely to be present? Which areas are most susceptible to 

invasion by nonnative species?), and then outline the theoretical basis and key 

assumptions of the application. In each application, we relate the desired model 

output to the types of predictions just discussed. We also describe practical 

considerations for implementing each application, including the most appro-

priate modeling methods and input data, with illustrative examples and discus-

sion of future directions and challenges.

In sum, in this brief introduction, we have attempted to give examples of 

types of model predictions that can yield useful information. It is important to 

reemphasize that, as with most modeling approaches, great opportunity exists 

to misapply these methods, with inappropriate assumptions or poor implemen-

tation. In particular, the risk exists that model users will be swayed by the ease 

of use of some methods with default settings, without critically evaluating how 

reasonable they are for the application and data at hand.

Many approaches described earlier utilize advanced computational tech-

nology [e.g., evolutionary-computing tools such as artifi cial neural networks 

(ANNs) and genetic algorithms (GAs)], along with large databases of digital 

environmental layers. It is tempting to think that advanced methods and large 

datasets will yield robust predictions, but such will be the case only if the con-

ceptual underpinnings of the model application are sound. Quite simply, no sub-

stitute exists for a good understanding of the natural history and distributional 

ecology of the species in question, the theoretical strengths and weaknesses of 

different methods, and the realities of the data available for the problem at 

hand, which may or may not match the assumptions of the application and/or 

the algorithm.
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Discovering Biodiversity

Ecological niche models may be exciting principally because they provide a 

predictive basis for novel inferences about biodiversity and its distribution in 

space, time, and environment. One way in which this predictive understanding 

can be put to good use is that of anticipating distributions of new elements of 

biodiversity (populations and species) that are not as-yet known or docu-

mented. Conceptually, the idea is quite straightforward, and a few initial ap-

plications have been developed; however, this application of niche models begs 

further exploration. If the initial promise continues to translate into further suc-

cess, this application may rank among the most interesting uses to which these 

tools can be applied, enabling further discovery and documentation of biodi-

versity. In this chapter, we describe the conceptual basis of using ecological 

niche modeling for discovering new elements of biodiversity, and review ap-

plications of this approach undertaken to date. We then outline both limitations 

and frontiers for this fi eld.

Generally, current knowledge of the diversity and distribution of biological 

species on Earth is remarkably poor, with the great majority of species yet to 

be described and catalogued scientifi cally. This problem has two key ele-

ments, which may be termed the “Linnaean ” and “Wallacean” shortfall s (Whit-

taker et al. 2005). The “Linnaean Shortfall” refers to lack of knowledge of how 

many and what kind of species exist—the term is a reference to Carl Linnaeus 

(1707–1778), who laid the foundations of modern taxonomy in the eighteenth 

century. The “Wallacean Shortfall” refers to inadequate and incomplete knowl-

edge of geographic distributions of species, referring to Alfred Russel Wallace 

(1823–1913), who, as well as contributing to the early development of evolu-

tionary theory, studied geographic distributions of species long before it be-

came popular. Ecological niche modeling offers a powerful tool with which to 

address both of these shortfalls.
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DISCOVERING POPULATIONS

The idea of using ecological niche models to guide searches for and discovery 

of unknown populations of species is perhaps the simplest of the “discovering 

biodiversity” applications. Given that few or no species have been sampled 

exhaustively, one of the original motivations behind the development of niche 

modeling tools was exactly this: fi lling in gaps among known occurrence sites 

by means of interpolation that is informed by environmental conditions. Hence, 

discovering as-yet undocumented populations that are disjunct from known 

populations (i.e., more complete documentation of GO) is another important 

functionality of ecological niche models. This approach takes advantage of 

“type two” model predictions illustrated in fi gure 10.1: the model identifi es 

areas environmentally similar to sites where the species has already been 

found, but from which no occurrence records are available. New surveys tar-

geting these areas should have increased chances of discovering unknown 

populations, in comparison with unguided, randomly placed surveys.

The idea of niche suitability providing an indication of presence of un-

sampled populations links to questions of inventory completeness that have 

been the focus of a suite of studies (e.g., Moreno and Halffter 2000). As biodi-

versity knowledge accumulates for a particular site, existing knowledge can be 

used to anticipate how many additional species remain to be detected there, 

and consequently how complete the inventory is at any point (Colwell and 

Coddington 1994, Soberón et al. 2007). Niche models can provide an indepen-

dent source of information on the question of how many additional species 

remain to be detected at a site, by superimposing individual niche models for 

each of multiple species. Ideally, such analyses should be conducted after pro-

cessing distributional predictions to consider the limitations of M and B and, 

as a consequence, estimate GO more closely (see chapter 8). Several analyses 

have tested the predictive nature of niche projections for anticipating commu-

nity composition with some degree of success (e.g., Feria and Peterson 2002, 

Graham and Hijmans 2006).

Conversely, the existence of barriers and interruptions in landscape suitabil-

ity, combined with absence of a particular species from isolated suitable re-

gions, can be a means of discovering dispersal barriers. When a species could 
be present (i.e., conditions are suitable) but is not (and this absence is demon-

strated via tests of sampling adequacy, as discussed in chapter 8; Anderson 

2003), we may interpret the situation as one of dispersal limitation  (i.e., site is 

within GP, but not GO; in other words, it is in GI) or biotic limitation. A few 

explorations of these ideas have now been developed (Anderson et al. 2002a, 

short
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Kambhampati and Peterson 2007), but these ideas will be treated in greater 

detail in chapter 15, which focuses on how niche models can inform studies of 

evolution and biogeography.

DISCOVERING SPECIES LIMITS 

An important issue in systematics and taxonomy is the fact that many cur-

rently recognized “species” actually represent complexes of morphologically 

similar species (e.g., Burg and Croxall 2004). The usual signals of such un-

recognized species limits are differentiation in phenotypic or molecular char-

acters, but ecological characters can potentially offer additional, complemen-

tary information (Wiens 2007). Coarse-resolution ecological characteristics 

related to scenopoetic variables offer the opportunity to discover populations 

that are effectively allopatric, isolated from remaining populations of the spe-

cies by unsuitable environments (Wiens and Graham 2005). Also, niche mod-

eling exercises can allow detection of populations that are differentiated in 

ecological features from other populations (Peterson and Holt 2003, Warren 

et al. 2008).

If other character sets indicate possible species-level differentiation for a set 

of populations, allopatry and ecological divergence (although not required for 

recognition as a distinct species) may provide additional evidence in that direc-

tion. More generally, to date, ecological dimensions have generally been con-

sidered in decisions regarding species status only in very general, nonquantita-

tive terms, and the approaches explored herein offer a means of improving and 

enriching these discussions. These ideas have been reviewed and explored by 

Raxworthy et al. (2007), Rissler and Apodaca (2007), Martínez-Gordillo et al. 

(2010), and Cadena and Cuervo (2009). In addition, they provide some basis 

for studying the geographic and ecological processes involved in speciation 

(e.g., Peterson et al. 1999, Graham et al. 2004b; see chapter 15).

However, the expectations of niche model comparisons in conspecifi c ver-

sus multispecifi c situations are not clear under different species concepts. 

That is, when no ecological differences are manifested, forms in allopatry may 

represent distinct species that have undergone vicariant speciation, or may 

simply represent undifferentiated forms of a single species (Peterson et al. 

1999). When ecological differences are manifested, however, once again the 

meaning is unclear—differentiation in allopatry has represented a long-term 

problem for decisions under some concepts of species (Zink and McKitrick 

1995).

short
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DISCOVERING UNKNOWN SPECIES

To the extent that ecological niches are conserved  across evolutionary time 

periods (see chapter 15), niche models can be developed for known species and 

used to “prospect” for unknown species. That is, if a species has an unknown 

sister species (or other close relative), and if ecological niche evolution has 

been minimal, the ecological characteristics of the known species may be able 

to inform us about the geographic distribution of the unknown species. This 

approach makes use of the “type three” predictions illustrated in fi gure 10.1: 

areas are identifi ed that are unoccupied by the species being modeled, but 

where closely related species occupying similar portions of environmental 

space may be found. In this way, ecological niche models—at least under some 

circumstances—offer the opportunity to discover presently unknown elements 

of biodiversity.

The basics of this idea—the assumption of niche conservatism—were es-

tablished in an early paper (Peterson et al. 1999) that showed that sister species 

of birds, mammals, and butterfl ies distributed on opposite sides of the Isthmus 

of Tehuantepec in southern Mexico tend to have similar ecological characteris-

tics. This result has seen both support (Kozak and Wiens 2006) and nonsupport 

(Peterson and Holt 2003, Graham et al. 2004b, Knouft et al. 2006) in subse-

quent analyses (again, see chapter 15). Warren et al. (2008) pointed out, how-

ever, that these conclusions depend on the null hypothesis being tested—some 

studies have tested the null hypothesis that the two species have ecological 

niches that are more similar than would be expected at random (Peterson et al. 

1999), whereas others have tested the null hypothesis that the two species have 

identical niches (Graham et al. 2004b, Knouft et al. 2006). More detailed dis-

cussion of these points is provided in chapter 15, which focuses on niche evo-

lution; here, we assume that some unspecifi ed degree of niche conservatism 

exists that provides some degree of predictibility across related taxa and makes 

use of niche models for discovering biodiversity possible.

CONNECTION TO THEORY

Biodiversity discovery applications of ecological niche modeling are feasible 

under certain circumstances. This use involves using occurrence data sampled 

(with all of the usual biases and gaps) from the occupied distributional area GO 

to create a niche model that characterizes the occupied area in detail. The as-

sumption is made that η(G�) ≈ η(GO) or η(GP) (the latter in the cases of popu-

lation and species discovery)—that is, that the ecological niche reconstructed 
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from the points derived from the occupied area is at least roughly equivalent to 

the niche that applies to the occupied and invadable distributional areas (Gui-

san and Thuiller 2005). If this assumption holds, then the niche model can be 

projected onto the landscape to identify a broader potential distributional area 

GP for the species or lineage.

A further assumption, at least in applications oriented at discovering un-

known species, is that dispersal constraint s constitute a signifi cant restriction 

on distributions of species in the system under study. That is to say, if the dis-

persal abilities of the species in question are good relative to the extent of the 

region under study, then the sort of isolation required for allopatric speciation 

to have occurred is unlikely to exist, and any new populations to be discovered 

are likely not to be differentiated markedly from known populations. In quan-

titative terms, in the BAM diagram  discussed in chapter 3, if M ⊂ A ∩ B, then 

the presence of differentiated populations would be unlikely. However, to as-

sess connectivity among populations on evolutionary timescales requires re-

constructions of paleoclimates and the assumption of niche conservatism over 

longer timescales. For example, even if sets of populations occur over continu-

ously distributed suitable habitat today, they are frequently strongly differen-

tiated genetically, owing to independent evolution (and perhaps speciation) in 

prior times when they were distributed allopatrically (Avise 2000) or to local 

adaptation along environmental gradients.

Finally, also for applications focused on discovery of unknown species, 

niche conservatism  is necessary if predictions of likely distributional areas are 

to prove realistic. If the known and unknown sister species have been evolving 

independently for a time span t, then the total evolutionary change accumu-

lated over 2t years (i.e., the total time of independent evolution between the 

two lineages) must not be so great that no predictivity among their respective 

distributional areas is obtained. This assumption, of course, remains untested 

in most cases, as one of the two species in question has yet to be discovered. In 

cases where niche evolution has been marked, niche modeling is unlikely to 

assist in discovery of currently unknown species—see Peterson and Navarro-

Sigüenza 2009 for an exploratory test of these eventualities, which identifi ed 

distributional areas for simulated “unknown” species with some success.

PRACTICAL CONSIDERATIONS

The methods, data, and approaches most useful in applications of ecological 

niche models oriented at discovering biodiversity are not particularly restrictive. 

One requirement is that the geographic extent of analysis (although likely not 
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that of calibration; see chapter 7) must be broad so as to include potential dis-

tributional areas of the related species. Rather than selecting one modeling al-

gorithm or another, the focus should be on implementing best practices with 

the algorithm(s) used. In general, the focus, of course, is on discovering the 

potential distribution of the species GP. As a consequence, any possible overfi t-

ting  to noise and/or sampling bias  in model calibration must be avoided; by a 

similar token, overprediction  (i.e., predicting too broad an area) can fail to 

identify specifi c areas, and as such can distract search efforts. Evaluating and 

fi ltering models based on independent subsets of occurrence data (preferably 

with evaluation data spatially stratifi ed and thus still more independent of cali-

bration data) will reduce the likelihood of overfi tting during model develop-

ment (see chapters 7 and 9).

The key step methodologically is that of seeking undocumented or unin-

habited areas that are suitable for the species, but in particular suitable areas 

that are disjunct from known distributional areas of the species. The simplest 

such areas will be clearly isolated from known populations—for instance, by a 

substantial distance. In other cases, uninhabited areas may be close to or even 

contiguous with known distributional areas—in these cases, populations to be 

discovered will likely not be distinct from known populations, unless some fi ne-

scale barrier (e.g., a river) or suture zone between two taxa exists in the midst 

of continuous suitable habitat (Costa et al. 2008).

In terms of still-more practical considerations, and particular emphases in 

model development and processing, several points should be weighed. In par-

ticular, occurrence data from known species/populations should be drawn from 

as much of the occupied distribution of the species (i.e., GO) as is feasible to 

represent its niche dimensions as completely as possible. Environmental data-

sets should be as broadly generalizable as possible—that is, they should be in 

no way tied to particular landscapes or time periods; rather, direct variables such 

as climatic dimensions will most probably be best able to anticipate the niches 

and distributions of unknown species and populations, because the correlations 

between them and the species’ response are less likely to change in other re-

gions (see chapter 6). Similarly, as discussed in chapter 7, for algorithms that use 

background, pseudoabsence, or true absence samples, the study region should 

be selected so as to avoid inadvertently inserting effects of history (or possibly 

sampling bias) into the modeling process, leading to underestimates of the spe-

cies’ potential distributional area (Anderson and Raza 2010). Finally, thresh-

olding decisions and evaluation statistics should emphasize minimization of 

omission error and should not overly penalize commission error (see chapter 9), 

as the latter is the focus of most inferences drawn from niche models (and in-

deed, it is not necessarily “error” in this context).
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REVIEW OF APPLICATIONS

We consider biodiversity discovery to be one of the areas in which niche model 

potential has been least well explored. That is, although prototypes have been 

developed for several applications, we believe that much more remains to be 

achieved and learned in this realm.

Discovering Populations

Applications of ecological niche modeling to discovery of unknown popula-

tions have been explored in a number of cases. For instance, a recent analysis 

(Guisan et al. 2006) applied general additive models (GAMs) to 92 occur-

rences of a rare plant species in Switzerland (Eryngium alpinum). A map from 

the publication (fi gure 11.1) illustrates the sampling and predictions that resulted 

from this effort. The modeling and fi eld efforts in this study revealed several 

previously unknown populations, and improved search effi ciency somewhere 

between twofold and fourfold.

Such analyses have now been used on several other occasions, basically 

confi rming the predictive power of ecological niche models in discovery of 

new populations of known species. Jarvis et al. (2005) used the distance-based 

niche modeling algorithm FloraMap (Jones and Gladkov 1999) to anticipate 

the distribution of a rare wild pepper (Capsicum fl exuosum). They discovered 

an additional six populations of the species. Bourg et al. (2005) used classifi -

cation and regression tree (CART) niche model estimates to discover eight 

additional populations of a rare forest plant (Xerophyllum asphodeloides) in 

the southeastern United States. Finally, Siqueira et al. (2009) based a very sim-

ple, distance-based prediction on a single known occurrence point of a rare 

plant in the southern Brazilian cerrado (Byrsonima subterranea), and discov-

ered six additional populations of the species via searches in high-probability 

areas.

Discovering Differentiated Forms

Discovering differentiated forms that are “lost” in synonymy of known species 

can be facilitated by two classes of information from ecological niche models—

confi rmation of allopatry (Wiens and Graham 2005), and documentation of 

ecological differentiation of the candidate form (Raxworthy et al. 2007). Each 

of these elements of evidence can be derived from ecological niche models, 

and can then be considered along with phenotypic and molecular evidence to 

arrive at educated decisions regarding species status. Although, strictly speak-

ing, the new forms were already “known” to science ( just not recognized as 

specifi cally distinct), this approach nonetheless serves to detect their isolation 
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and/or differentiation, and as such to assist in appreciating the terminal units of 

biological diversity when combined with phylogeographic analyses.

Raxworthy et al. (2007) developed this reasoning further in explorations of 

the day gecko genus Phelsuma. For the “species” P. madagascariensis, they 

showed that ecological niche models based on all populations of the group 

combined was overly broad, extending into areas well outside the species’ dis-

tribution. Individual niche models for each of three differentiated subspecies, 

however, produced predictions that were considerably tighter, and the authors 

included this information in their argument for species status for each of the 

three forms. Similar analyses within the P. dubia group contributed to the for-

mal elevation to species status of a previously unrecognized species. However, 

these analyses would benefi t from tests of niche identity that consider explic-

itly the similarity of niches and the landscapes that are accessible (M) to each 

Figure 11.1. A map of the potential distributional area GP of the rare and endan-

gered plant Eryngium alpinum in Switzerland (Guisan et al. 2006). The darker 

gray shading indicates area predicted by the models, and stars indicate new popu-

lations discovered as a consequence of the model predictions.

Observations

Predicted areas

Subareas

new
confirmed
not visited
not confirmed
introduced or cultivated

probability > 0.80

unsuitable
uncertain
suitable
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form (Warren et al. 2008), and the expectations under different species con-

cepts are unclear (Rissler and Apodaca 2007). This analysis is fascinating in 

that many present-day species-level taxa around the world are known to be overly 

“lumped” (Peterson 2006b), and as such would benefi t greatly from analyses of 

this sort.

Discovering Species

Perhaps most fascinating among “discovering biodiversity” applications of eco-

logical niche modeling is an analysis of chameleons in Madagascar (fi gure 11.2; 

Raxworthy et al. 2003). The authors developed niche models for 11 species in 

three chameleon genera, and for each species identifi ed disjunct areas of over-

prediction in which the species was not known to occur. In particular, three 

Figure 11.2. Example of use of ecological niche models to anticipate the distri-

butions of species not yet known to science. Eleven species of chameleons were 

modeled based on known occurrences, with the goal of estimating the abiotically 

suitable area GA. Areas of suitability that are not known to hold populations of the 

species in question are indicated with ellipses—these areas are the targets for sur-

veys. Adapted from Raxworthy et al. (2003).
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disjunct, uninhabited areas were identifi ed as consistently suitable. Subsequent 

fi eld surveys in those areas yielded seven new chameleon species, whereas 

surveys in many other areas did not yield more than a single new chameleon 

species. Hence, this initial exploration used the idea of ecological niche con-

servatism to identify likely distributional areas for related, but as-yet unknown, 

species. We know of no other such explorations, but greatly look forward to see-

ing them as they are developed.

DISCUSSION

The preceding examples should illustrate the promise of these applications 

of niche models. Nonetheless, the set of examples is relatively sparse, with 

much more exploration remaining. Some considerations for such future stud-

ies follow.

Caveats and Limitations

As mentioned earlier, an important assumption in applications oriented toward 

discovery of species or populations is that niche  evolution in the lineages in 

question is minimal, either through time if the goal is to discover species or 

across space if the goal is discovery of populations (Peterson and Holt 2003). 

If these basic assumptions are not met, then niche models will fail or be less 

effective in identifying distributional areas for the populations or species of 

interest.

A more subtle caveat, however, is that existing knowledge can constrain 

which parts of unknown diversity can be discovered. Given the cautions men-

tioned in the previous paragraph, new discoveries will focus on taxa or popula-

tions similar to those already known, so if greater ecological niche diversity is 

present among unknown forms, only the part that is similar to known forms 

will be discovered preferentially using these methods. Of more concern, al-

though unavoidable for practical reasons, is that if new populations of a rare 

species with a broad niche are discovered based on their environmental simi-

larity to known occurrence points, then our understanding of the species’ niche 

will be underestimated, because the environments of the fi rst localities con-

strained discovery of populations to those in similar environments. Indeed, sev-

eral studies in this realm have used an iterative process of model development, 

exploration and addition to knowledge, and then further model development, etc. 

(Guisan et al. 2006, Siqueira et al. 2009)—this approach may be particularly 

vulnerable to such constraints regarding which forms or populations are likely 

to be discovered.

11peterson.189_199.indd   19811peterson.189_199.indd   198 6/8/11   8:50 PM6/8/11   8:50 PM



D I S C OV E R I N G  B I O D I V E R S I T Y  1 9 9

Future Directions and Challenges

The suite of niche modeling applications treated in this chapter is clearly still 

in only the early stages of exploration and development. Methodologies are 

still preliminary, and comparative evaluations are only beginning to be pub-

lished (Peterson and Navarro-Sigüenza 2009). Certainly, though, the opportu-

nity for such evaluations exists, as one could set aside known species, and test 

the ability of different approaches to “predict” the existence of the “unknown” 

species. Such exploratory analyses would serve as an important benchmark for 

further explorations of the utility of niche modeling tools to assist in biodiver-

sity discovery. Also, confi rmatory surveys in such studies need to include sites 

not predicted by the niche model so as to explore further its discriminatory 

ability.

More generally, however, it is more or less clear that niche modeling tools 

have a great deal to offer to the process of biodiversity discovery. Individual 

species may be understood in greater detail, or close relatives discovered; iter-

ating analyses over many species, the same techniques can be used to pinpoint 

areas of highest priority for broad-spectrum biodiversity sampling. Once the 

concepts of ecological niches are clarifi ed, and the capacities of the various 

tools for characterizing them are understood better, the present storehouse of 

biodiversity information can prove enormously useful in developing and com-

pleting a more comprehensive picture of landscape- and regional-level biodiver-

sity patterns.
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Conservation Planning and 

Climate Change Effects

The fi eld of conservation biology seeks to provide scientifi c guidance for halt-

ing or slowing the current extinction wave and degradation of the planet’s bio-

logical diversity. To achieve this goal, conservation biologists attempt to an-

swer fundamental questions, such as what to conserve, where best to conserve 

it, and how best to conserve it (Primack 2006). Can niche models help to 

 address these questions? We believe that the answer is yes, particularly by 

helping researchers answer the “what” and “where” questions. However, using 

niche models to address conservation questions requires a solid understanding 

of the underlying concepts and methods.

Inappropriate interpretation of the underlying theory and methods can lead 

to mistakes and potentially misleading interpretations of niche model outputs. 

Therefore, in this chapter, we introduce briefl y the conceptual aspects of the 

“what” and “where” questions in conservation biology, and discuss how niche 

models can help address these questions. Topics addressed include inferences 

about extinction risk, identifi cation of regions for species reintroductions, con-

servation reserve network planning, and considerations of how climate change 

may affect species’ distributions. Each of these conservation applications is 

discussed with respect to the conceptual framework laid out in chapters 2 and 

3, and practical recommendations regarding calibration and evaluation of niche 

models are also offered.

GENERALITIES

If given the opportunity, conservation practitioners would certainly target and 

manage all genetically distinct populations of all species on Earth. In practice, 

however, biodiversity conservation must coexist with competing human inter-

ests (Primack 2006). Effective conservation action thus entails a diffi cult, but 

unavoidable, process of prioritization of limited effort, opportunities, and re-
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sources. In addition, scientifi c and technical diffi culties further complicate the 

situation: only a small proportion of global biodiversity is known (the Linnaean 

Shortfall ) and distributions and abundance patterns of elements of biodiversity 

are also poorly understood (the Wallacean Shortfall; Whittaker et al. 2005). 

Arguably, even less understood are the networks of interactions existing among 

organisms and between organisms and physical and environmental systems—

gaps in understanding that might be termed the Eltonian and Grinnellian short-

falls.

The idea of measuring biodiversity value as the relative contribution of a 

particular biodiversity object to an overall set of objects was coined as the 

“complementarity principle” (Vane-Wright et al. 1991). Although several defi -

nitions of complementarity exist, the most general defi nes it as “a property of 

sets of objects that exists when at least some of the objects in one set differ 

from the objects in another set” (Williams 2001). Even though complemen-

tarity is most often associated with prioritization of areas for conservation 

(Margules and Pressey 2000), the original formulation was broader, providing 

a rationale for ranking species as well as areas regarding relative biodiversity 

value (Vane-Wright 1996). These ideas have had greatest impact on prioritiza-

tion of areas for conservation, probably because of theoretical (Erwin 1991) 

and technical (Faith 1993) diffi culties with implementation of the principle for 

organisms.

The idea of urgency of conservation action was discussed by Norman Myers 

in his famous allusion to the concept of triage, in which wounded soldiers are 

assigned priority based on who could be saved, who can probably survive with-

out attention, and who will die regardless of how much attention is received 

(Myers 1979). As such, extinction risk is a common currency of conservation 

priority. One example of prioritization at the site level is mapping biodiversity 

hotspots, a concept proposed by Myers et al. (2000) and promoted in particular 

by Conservation International (Mittermeier et al. 1998).

CONNECTION TO THEORY

We have argued that conservation problems can be classifi ed into broad 

 questions—the “what” question entails mainly measurement of conservation 

priorities at the level of species or populations, whereas the “where” question 

entails both measurement of value (complementarity) and priority at the level of 

sites. The diversity of these challenges makes for distinct considerations when 

applying niche modeling to conservation. In light of this diversity, we review 

each sort of application separately.
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Estimating Extinction Risk for Species

The process of extinction is one of population reduction, which is manifested 

as range loss and eventually extinction of the species. Some mechanisms lead-

ing to such losses involve reduction of quantity and quality of suitable areas for 

a species, a process that can be modeled fairly easily. For example, Brooks et 

al. (1997) used species-area relationships derived from island biogeography 

theory (MacArthur and Wilson 1967) to predict losses of forest species follow-

ing deforestation of insular systems in the Philippines and Indonesia. Thomas 

et al. (2004a) extended this idea to make predictions of extinction risk for in-

dividual species in response to modeled future changes in spatial footprint of 

climate envelopes of species. In both cases, generalizations are made about 

relationships between area and extinction risk, but the general principle—that 

range loss follows population reduction and increases extinction risk—is hardly 

controversial.

Mechanisms leading to extinction of small populations may be diffi cult to 

model with correlative approaches like niche models, because they frequently 

involve stochastic rather than deterministic processes (Lande et al. 2003). Fur-

thermore, they entail processes that are more demographic or genetic (e.g., de-

mographic stochasticity, unbalanced sex ratios, inbreeding depression, genetic 

drift) than geographic. Nevertheless, integration of deterministic processes 

leading to population decline (e.g., habitat reduction, estimated via niche mod-

eling and current environmental data, e.g., from remote sensing) is possible—

for example, Keith et al. (2008) used niche models to project changes through 

time in climatic suitability for 234 plant species, and coupled the model out-

puts with spatially explicit stochastic population models. With this approach, 

they were able to explore interactions of mechanisms causing population de-

cline with stochastic factors driving population fl uctuations. Although the re-

sults were not tested with real data, the study demonstrated the possibility of 

coupling niche and population models in a common framework. A simpler 

study that employed an elegant test of model predictions focused on Aloe di-
chotoma, a tree species of southern South Africa, in which dead individuals 

are clearly visible and identifi able at long distances—as a consequence, when 

mortality rates were compared with niche model predictions for changing suit-

ability over coming decades, a signifi cant result was obtained (Foden et al. 

2007).

Niche models, when applied to estimating extinction risk, must then esti-

mate changes in species’ occupied geographic distribution s (that is, GO before 

and after some change event, which we will term Δ GO; table 12.1), rather than 

their potential distributions (GP). In the simplest sense, these estimates can be 

based on before-and-after estimates of species’ distributions. However, realis-
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tic extinction models will require spatially explicit, mechanistic simulations of 

dispersal  probabilities, biotic interactions, and key population-level parameters 

unique to each species (but that are often generalized among ecologically simi-

lar species or sister taxa). To address this problem, niche models can be cou-

pled with spatially explicit dynamic population models by providing resource-

function estimates, which can then be used as surrogates for carrying capacity 

in population models (Anderson et al. 2009). Resource function estimates are 

usually taken from estimates of probabilities of occurrence or suitability indi-

ces, but with a closer tie to population processes. Initial explorations of the use 

of niche models to predict extinction probability or local abundances are yield-

ing promising results (Araújo et al. 2002, VanDerWal et al. 2009).

Finally, simple statistical models allow estimation of total abundance given 

occupied area and an index of aggregation of individuals in space (He and 

Gaston 2000). Using our notation along with equation 5 in He and Gaston 

(2000), an estimate of total number of individuals N̂ in a region of area G, if the 

distributional area of the species is GO, would be

 |G |  |GO
|

 N̂ � —– ��1 – –—–�
–1/k

 – 1�, (12.1)
 a |G |

where a is the resolution of the cells in the grid, and k is the negative binomial 

parameter describing degree of “clumpiness” in the spatial distribution of indi-

viduals (small k means highly aggregated distributions; note other uses of these 

same symbols in previous parts of this book).

Table 12.1. Dimensions of the challenges in conservation biology that are 

potentially illuminated by ecological niche modeling approaches.

Topic G-space Comments

Extinction risk ΔGO  Requires explicit modeling of changes in GO, 

e.g., by coupling niche-based predictions with 

spatially explicit stochastic population models.

Introductions GA or GP  Niche models are not asked only to fi t the data 

well. Instead, they should characterize the 

abiotically suitable area.

Conservation   Suitability indices are estimated and overlaid on

planning GO observed species occurrences.

Climate change ΔGA or GP/ΔGO  Generally, changes in potential distributions are 

required, but sometimes it is changes in observed 

distributions that matter. Solutions depend on 

the specifi c goals.
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Conservation Planning

Reserve networks are designed ultimately to ensure persistence of species or 

other valued ecosystem attributes (e.g., habitats or vegetation types). To this 

end, reserve networks should be designed to represent enough individuals of 

the valued species to ensure viable populations. How many is enough is a dis-

cussion beyond the scope of this book (see Lande 1988, Rodrigues and Gaston 

2001). When the geographic distribution of a species is poorly documented, it 

is tempting to use niche models to predict possible suitable and presumed oc-

cupied locations that are not documented owing to insuffi cient sampling. Of 

course, this process of estimating GO is not simple and straightforward (see 

chapters 7 and 8), and all of the usual precautions regarding estimating GO and 

distinguishing it from GP must be considered. However, this sort of estimation 

prior to conservation planning can potentially inform prioritization efforts greatly 

(Peterson et al. 2000).

Strictly speaking, unless niche models are coupled with dispersal  modeling 

(e.g., Collingham et al. 1996) and incorporate interactions with other species 

as potential modifi ers (e.g., Anderson et al. 2002b, Araújo and Luoto 2007, 

Heikkinen et al. 2007), model outcomes should be interpreted as GA or GP (see 

chapter 8). When making predictions with ecological niche models, we have 

no guarantee that the species occurs at a particular site or will ever occur there. 

Therefore, decisions as to whether to use such projected distributions for re-

serve selection are contingent on the types of error that conservation planners 

are willing to accept. In most cases, planners are cautious about incurring com-

mission error  (i.e., protecting an area for a species that is not, in fact, present), but 

may be willing to accept omission error (except for the case of very rare spe-

cies), in which some occupied sites are left out of the prioritization exercise.

An alternative, and potentially more helpful, use of niche modeling in con-

servation planning is that of providing suitability scores (see chapter 7) as a sur-

rogate for persistence probabilities (e.g., Araújo and Williams 2000). If niche 

theory is correct and applicable (see chapter 2) and the data (see chapters 5 and 

6) and methods used to estimate niches (see chapter 7) are adequate, then areas 

predicted as highly suitable for a species can be identifi ed. Overlaying sites of 

known occurrence, candidate reserves can be selected with emphasis on popu-

lations known to be present and predicted most likely to persist. Of course, 

suitability is being used as a surrogate for persistence, so ideally, more direct, 

process-based estimates of population viability would be derived from models 

explicitly simulating extinction processes (perhaps taking into account effects 

of land use change, climate change, and dispersal, in addition to patch size and 

confi guration), although it is often not feasible to construct such models across 

large areas or for many species.
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Species Reintroductions

A further application of niche models in conservation activities is that of pri-

oritizing for reintroduction  efforts, by identifying the most suitable areas. Al-

though many GIS-based analyses of reintroduction sites have been developed 

(Howells and Edwards-Jones 1997, Bright and Smithson 2001, Carroll et al. 

2003), ecological niche suitability considerations have been taken into account 

explicitly in only a few studies to date (Pearce and Lindenmayer 1998, Martínez-

Meyer et al. 2006). Here, clearly, the focus is not on GO, but rather on GI, as the 

species is not present at the sites prior to reintroduction.

Factors unrelated to A and B (see chapter 3) are hypothesized to have led to 

the species’ absence in such areas. In many cases, these factors will be human 

presence, anthropogenic habitat fragmentation, or hunting pressure that may 

have extirpated the species’ populations from the area in the past (although 

strictly speaking, competition with humans falls under B), so the niche models 

would provide information regarding which sites hold optimal conditions for 

reestablishment of populations, after the additional negative factor has been 

removed or mitigated. In other cases, knowledge of original distributions may 

be very incomplete, or conservation-based introductions may even place the 

species at sites where it did not originally occur, i.e., where M is important (Cade 

and Temple 1995). At any rate, planning for reintroductions clearly must focus 

on GI. Niche modeling should constitute a critical fi rst step in the planning 

process for a reintroduction: once environmentally suitable but unoccupied areas 

(GI) are identifi ed, fi eld work can focus on other factors, such as availability 

of food resources, threat by human activities, and attitude of local residents to 

introduction, to make a fi nal decision on where to introduce a species.

Climate and Land Use Change

Evidence that climate governs the distributions of species comes from ex-

amination of two features of species’ range limits (Root 1988, Gaston 2003): 

(1)  distributional limits are often correlated with particular combinations of 

climatic variables, and (2) they often change through time in synchrony with 

changes in climate. Examples of the second point include latitudinal shifts 

in species’ distributions in response to glacial cycles during the Pleistocene 

(Wells and Jorgensen 1964), or recent poleward expansions of plants (Walther 

et al. 2005), breeding birds (Thomas and Lennon 1999), butterfl ies (Thomas et 

al. 2004b, Parmesan 2006), and several other groups (Hickling et al. 2006). If 

climatic factors control species’ distributional limits, then range shifts should 

be easily anticipated using methods focused on species-climate relationships. 

Such a situation requires careful and complete estimation of the full dimen-

sions of the ecological niche of the species, because different sectors of the 
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niche may be important to making an area “suitable” in different sectors of the 

distributional area.

Several generalities can be stated regarding the form that climate change 

effects will likely take for species. For example, with warming climates, par-

ticular climate regimes will—in general—be expected to shift upward in ele-

vation and poleward in latitude (Parmesan 2006). Results of niche modeling 

studies suggest that an additional “general” property will be that fl atlands sys-

tems will see more dramatic spatial effects of changing climates than montane 

systems (Peterson 2003b). However, and perhaps most critically, niche model-

ing studies (Iverson and Prasad 1998, Peterson et al. 2002b, Thomas et al. 

2004a) and empirical analyses (Parmesan 2006) both indicate that species will 

often show individualistic responses to changing climates, so the generalities 

will hold only on average, and not in particular cases. Hence, climate change 

considerations will require species-by-species consideration of likely effects, 

which can be forecast via use of niche-modeling approaches.

PRACTICAL CONSIDERATIONS

Applications of niche modeling to conservation challenges are diverse, and as 

such the particulars required of model estimation for these applications are 

similarly varied. In particular, applications to conservation planning (i.e., pro-

tected area planning) require careful estimates of GO, and understanding ex-

tinction risk requires detection of change in GO over a given time period. In 

contrast, applications to planning species reintroductions and climate change 

forecasting require careful and complete estimates of GP, and in the latter case 

careful consideration of dispersal potential of the species (M) to track or detect 

and colonize those areas. These diverse needs will be refl ected in diverse meth-

odologies, and of course all of the caveats and precautions discussed in previ-

ous chapters will apply.

One particular diffi culty is that models projecting distributions of species 

under climate change scenarios are often asked to make predictions onto future 

conditions that are not available across the region on which the models were 

calibrated (i.e., extrapolation in E; see chapter 7). We will frequently face ques-

tions like, “if the species of interest ranges 10–18°C, and the maximum tem-

perature represented on the calibration landscape is 18°C, then what will the 

species do under conditions of 20°C?” In theory, and probably in practice as 

well, correlative models are incapable of providing robust projections for non-

analog climate conditions, and models fi tted with different mathematical func-

tions will extrapolate potential distributions of species in very different ways 
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(Thuiller 2004, Pearson et al. 2006). Making predictions in such situations 

requires assumptions regarding the shape of species’ responses to unknown 

conditions, and various assumptions are possible (see chapter 7; Williams and 

Jackson 2007, Anderson and Raza 2010).

Although we know of no easy fi x for this problem, models should be cali-

brated with as much of the species’ EO represented as possible. For example, if 

one is interested in modeling likely responses of plants in Great Britain to fu-

ture climate change, models can be calibrated (with occurrence and environ-

mental data) at the extent of all of Europe (see chapter 7; Pearson et al. 2002). 

These more complete representations of niche estimates may be more repre-

sentative of the species’ potential response.

In climate change studies, particularly those looking into the future (as op-

posed to the past), model validation is often impossible (Araújo et al. 2005a). 

Partial validation  of predictions by “hindcasting”  (i.e., calibrating models with 

contemporary data, and evaluating with past data before forward-projecting) is 

a possibility (Araújo et al. 2005a, Martínez-Meyer and Peterson 2006), but will 

be applicable to only a small number of species owing to the incomplete nature 

of the historical record. (Note that molecular systematic analyses may provide 

additional opportunities for tests.) Other partial model validations are possible 

by testing across space instead of over time (Fielding and Haworth 1995, Ran-

din et al. 2006, Jakob et al. 2009), but the degree to which spatial dynamics 

mirror temporal dynamics in determining species’ distributions has not been 

evaluated carefully. Although these validations are at best indirect, they none-

theless are at least relevant to the question of niche conservatism through time; 

the only other option is model verifi cation (see chapter 9), but this strategy 

evaluates only internal consistency of models based on single time periods.

Assuming the lack of an objective basis for selecting the most appropriate 

algorithm for modeling species’ range shifts under climate change, an alterna-

tive paradigm is to calibrate ensembles of models (via various algorithms) and 

explore the resulting range of uncertainties (reviewed by Araújo and New 

2007). It has been shown, both theoretically (Bates and Granger 1969) and 

empirically (Clemen 1989, Araújo et al. 2005b), that combining ensembles  of 

models can yield forecasts with better predictive ability than the individual fore-

casts (although see the discussion of limitations of ensemble approaches in 

chapter 7). With the starting assumptions that projections are equally correct (a 

big “if”) and that they collectively delimit the range of uncertainties associated 

with the future range of the species (also not clear), a “majority-vote” criterion 

can be made by assigning higher probabilities to median projections. Alterna-

tively, different projections from different models may be weighted differently 

based on Bayesian posterior probabilities or other measures of model quality 
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(Hastie et al. 2001) to avoid diluting powerful and insightful model signal with 

noise from less useful models.

REVIEW OF APPLICATIONS

As should be clear from the preceding paragraphs, applications of niche mod-

eling to conservation are both numerous and diverse. As such, we explore each 

type of application separately. Several of these applications are quite special-

ized, and the examples we feature are selected from among dozens of examples 

that are being developed by researchers around the world.

Estimating Extinction Risk for Species

The simplest applications in this category consist of evaluations of the distri-

butional characteristics of species of particular interest. For example, a recent 

study evaluated the distributional characteristics of the Sierra Madre Sparrow 

(Xenospiza baileyi), which has a sparse and perhaps declining distribution in 

central and western Mexico (Rojas-Soto et al. 2008). A particular question for 

this species was whether the three apparently disjunct known populations are 

genuinely disjunct (they appear to be), or whether additional populations might 

exist in intervening patches of suitable habitat (few or none appear to exist; 

fi gure 12.1). The study produced the fi rst quantitative estimates of the distri-

butional area of the species, and identifi ed a few areas for additional fi eld 

work in western Mexico. Other, similar studies have illuminated distributional 

areas of diverse species around the world (Ortíz-Pulido et al. 2002, Gaubert et 

al. 2006, Peterson and Martínez-Meyer 2007, Peterson and Papeş 2007, Vanak 

et al. 2008).

More complex analyses of extinction risk of species have incorporated land 

cover information into development of refi ned risk estimates. With a simple 

methodology, Sánchez-Cordero et al. (2005) estimated range loss owing to de-

forestation for mammals across Mexico—they simply estimated GP based on 

niche modeling in climatic dimensions, and reduced that to an estimate of GO 

by means of “cookie-cutting” based on explicit assumptions regarding species’ 

associations with particular land-cover types (see chapter 8). An improvement 

on the initial estimates was to link classes of original vegetation maps (for 

model calibration) with the same classes of current land-cover maps (for model 

projections to estimate “current” distributions) in niche models to yield quan-

titative estimates of range loss resulting from land use transformation (Peterson 

et al. 2006b, Soberón and Peterson 2008). These extrapolations offer the poten-

short
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tial for development of species-specifi c and site-specifi c projections of likely 

range loss in considerable detail (fi gure 12.2).

Conservation Planning

Perhaps the oldest applications of this ilk are the distributional mapping efforts 

developed as part of the U.S. National Gap Analysis Program (Scott et al. 1993 

and 1996). These efforts intended to combine spatial interpolations (informed 

Figure 12.1. Ecological niche model estimates of distributional areas of the 

 Sierra Madre Sparrow (Xenospiza baileyi), which has disjunct distributional areas 

in central and western Mexico, showing the effects of the numbers of environmen-

tal variables used in model calibration. Panels A and C were based only on occur-

rence data from northern populations, while B and D were based on occurrence data 

from southern populations. Panels A and B show model results based on an overly 

dimensional environmental space, whereas C and D were based on simpler envi-

ronmental spaces. Panel D is that which is closest to the occupied distribution of 

the species. Adapted from Rojas-Soto et al. (2008).

A

B

C

D

Predicted suitability

low high
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and refi ned by information on land-use patterns) with conservation reserve net-

work information to identify gaps in protection. Unfortunately, this endeavor 

fell short of expectations owing to poor quality of the distributional information 

and modeling methods used, which were largely binary vegetation-surrogate 

approaches (Peterson and Kluza 2003, Peterson 2005a).

More recently, numerous studies have used niche modeling approaches to 

estimate distributions of suites of species, processed them into estimates of GO, 

and used this distributional information in analyses of complementarity to pri-

oritize areas for conservation. These efforts, as mentioned earlier, are vulner-

able to many problems with error propagation—omission or commission error 

in individual species’ predictions can be propagated through the procedure to 

yield prioritizations that do not give the desired results. At the same time, the 

distributional estimates—if developed rigorously—have the potential to avoid 

many problems with sampling effort and completeness (Rojas-Soto et al. 

2003). The resolution of analysis is also critical: the species may not be found 

in all areas of the pixel, given distributional constraints operating at fi ner reso-

lutions. Nonetheless, at least as a heuristic tool, this approach has been applied 

broadly and has yielded some interesting results (e.g., Godown and Peterson 

2000, Peterson et al. 2000, Chen and Peterson 2002, Loiselle et al. 2003, Ortega-

Huerta and Peterson 2004, Moilanen 2005, Ramírez-Bastida et al. 2008, To-

ribio and Peterson 2008, Koleff et al. 2009).

Niche models have also been used to evaluate the effectiveness of current 

protected areas in protecting biodiversity under scenarios of future distributions 

of climatic conditions (Hannah et al. 2007). For the more detailed prioritization 

exercises mentioned earlier, in which extinction probability and suitability are 

Figure 12.2. Illustration of detection of areas of likely population extirpation. 

This fi gure tallies population losses (greater losses shown in darker shades of gray) 

over Mexican species of jays (Corvidae), from Peterson et al. (2006b), based on 

niche model results tied to temporally explicit summaries of spatial extent of pri-

mary habitats across Mexico.

Should we 

redraw the 

box around 

the fi gure?
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estimated using niche model results, only initial steps have been taken. For ex-

ample, using distributional data for breeding songbirds in Great Britain, Araújo 

et al. (2002) showed that probabilities of occurrence of species derived from a 

niche model were related to local probabilities of extinction over a 20-year 

period (1970s to 1990s). It was also shown that local extinctions in the 1990s 

could have been reduced if conservation areas had been selected to maximize 

species’ probabilities of occurrence in the 1970s, suggesting that extinctions 

could be minimized if even simple treatment of estimates of persistence were 

incorporated into reserve selection procedures. In another example, Kremen 

et al. (2008) incorporated niche models (termed by them “species distribution 

models”) in an analysis to identify priority areas for conservation in Madagas-

car. In that study, estimates of GO were generated from GP by “clipping” model 

predictions to a minimum convex hull fi tted around the known occurrence lo-

calities for each species.

Species Reintroductions

A few studies have begun to incorporate niche modeling ideas into prioritiza-

tion for reintroductions  of species (Pearce and Lindenmayer 1998, Martínez-

Meyer et al. 2006). In these studies, the researcher takes advantage of the anal-

ogy between reintroductions and species’ invasions (Bright and Smithson 2001). 

That is, the site of interest for reintroduction is outside of GO at present, but if 

it is within GP, then it may be suitable for reintroductions, or even introduc-

tions to sites new for the species.

For example, Martínez-Meyer et al. (2006) assessed sites across Mexico for 

suitability for potential reintroductions of California Condor (Gymnogyps cali-
fornianus) and Mexican Wolf (Canis lupus baileyi; fi gure 12.3). The authors 

evaluated sites to ensure that they (1) fi t the ecological niche of the species (i.e., 

in GP); (2) were within the historical range of the species (i.e., in GO); (3) were 

relatively remote from human presence; (4) were in relatively large extents of 

suitable habitat; and (5) were robust to changing climates (see the following). 

A parallel endeavor was presented by Pearce and Lindenmayer (1998), who 

identifi ed potential reintroduction sites for the endangered Helmeted Honey-

eater (Lichenostomus melanops cassidix) in Victoria, southeastern Australia.

Climate and Land Use Change

Studies investigating climate change impacts on species’ distributions rank 

among the most prominent applications of niche models (e.g., Iverson and 

Prasad 1998, Peterson et al. 2002b, Thomas et al. 2004a, Thuiller et al. 2005a, 

Araújo et al. 2006, Huntley et al. 2008). The potential utility of this application 

of ecological niche models has been debated, with attention focusing on the 
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importance of many factors including changing biotic interactions, dispersal 

limitation, and potential for rapid evolutionary adaptation (e.g., Davis et al. 

1998, Pearson and Dawson 2003, Hampe 2004, Thuiller et al. 2004b, Beale 

et al. 2008).

Despite uncertainties, and in contrast to earlier treatments (Dobson et al. 

1989, Peters and Myers 1991–1992), niche models offer the potential to fore-

cast future potential distributional areas for species under explicit climate change 

Figure 12.3. Example prioritization of areas for reintroductions of California 

Condor (Gymnogyps californianus) in Baja California, Mexico, from Martínez-

Meyer et al. (2006). Panel A shows a crude and coarse niche model result, cut 

in B to refl ect the distribution of primary vegetation, and in C by removing areas 

exposed to humans (i.e., roads and settlements). Finally, in D, areas from C are 

identifi ed that are also robust to likely climate change effects.

A

0 100 200km

C

B

D

Predicted suitability
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scenarios, a considerable improvement over earlier, subjective treatments. Sin-

gle species’ possible distribution shifts have been evaluated to detect popula-

tions likely to remain stable over coming decades, as compared with others that 

are likely to be lost, and these projections have been assembled over faunas, 

fl oras, and biotas to build composite future projections (e.g., Peterson et al. 

2001, Berry et al. 2002, Erasmus et al. 2002, Midgley et al. 2002, Peterson et 

al. 2002b, Midgley et al. 2003, Siqueira and Peterson 2003, Téllez-Valdés and 

Dávila-Aranda 2003, Peterson et al. 2004c, Thomas et al. 2004a, Anciães and 

Peterson 2006).

In another application, Araújo et al. (2004) used niche models to test the 

ability of spatial conservation planning methodologies to consider both current 

and future (changed climate) abiotically suitable distributional areas (GA) of 

European plant species. They concluded that no single conservation area would 

ensure persistence of all species over a 50-year period, and that clustered con-

servation areas would lead to loss of most species under climate change. In 

contrast, conservation areas selected in high-quality habitat species-by-species 

would lose fewer species. Interestingly, they also showed that uncertainties ac-

crued from dispersal were less important than uncertainties associated with 

choice of the place-prioritization technique. Niche models have also been used 

for identifi cation of future protected areas and biodiversity corridors (Williams 

et al. 2005, Phillips et al. 2008).

SUMMARY

Conservation biology is oriented toward providing effective and well-planned 

guidance for conservation action. As such, issues of model error and uncertainty 

are critical when using ecological niche models for conservation. For some 

applications (e.g., reserve planning, extinction risk assessment), commision 

error  can be a major problem, as it can lead to conservation investment in areas 

that are not, in truth, of high priority. In other applications, such as in the case 

of planning for reintroductions of species, the identifi cation of suitable but cur-

rently unoccupied areas may be advantageous, in representing the invadable 

distributional area GI, instead of the current occupied distributional area GO.

Under scenarios of climate change, characterization of error becomes more 

complex and dependent on the specifi c goal of the assessment. In many cases, 

measuring changes in the position and area of GP through time is the priority, 

as it gives a measure of the areal extent of distributional possibilities of the 

species in the face of climate change. Because model validation is not com-

monly possible, ensemble approaches to creating forecasts and examining the 
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resulting uncertainties may become necessary, particularly in light of the rather 

dramatic variation that is observed among projections from different ecologi-

cal niche model algorithms and among alternative scenarios of future climatic 

patterns. Clearly, initial attempts have made progress, but much remains to be 

learned, developed, and tested rigorously.
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Species’ Invasions

Invasive species are a global phenomenon with massive consequences, both in 

biological and economic realms (Williamson 1996, NAS 2002). In human eco-

nomic arenas, invasive species affect agricultural productivity, transportation 

systems, communication systems, disease transmission, recreational fi shing, 

hunting, and birdwatching, and many other dimensions (Pimentel et al. 2004), 

with economic costs that mount into the billions of U.S. dollars annually. In-

deed, a recent calculation was that the annual cost of invasive species in the 

United States alone reaches $120 billion annually (Pimentel et al. 2004). In 

natural systems, invasive species can be transformational, affecting not only 

ecosystem services (Zavaleta et al. 2001) but also endangering or extirpating 

native species (Chapin et al. 2000, Clavero and García-Berthou 2005). As such, 

invasive species—and the population-level and biogeographic processes that 

lead to invasions—are of considerable interest and importance.

In the fi eld of ecological niche modeling, invasive species are of particular 

interest. This application makes use of the “type three” predictions illustrated 

in fi gure 10.1: areas are identifi ed that are currently unoccupied by the species 

but are likely to be susceptible to invasion if limitations on dispersal are removed. 

Niche modeling has been applied most commonly at broad spatial extents (So-

berón 2007)—as such, it is diffi cult to test with experimental manipulations, 

due to the considerable effort required to perform ecological experiments at 

biogeographic extents. The broadening degree of human movements and ac-

tivities, however, provides what is effectively a series of experiments—what 

happens to a species’ geographic distribution when its dispersal capabilities 

(M in the BAM diagram ) are expanded? ENM and associated theory encapsu-

lated in the BAM diagram yield clear, quantitative predictions that can be tested 

by means of such unplanned experiments, so species’ invasions offer a fasci-

nating arena in which to explore the processes underlying geographic ecology.

In effect, both the practical (applied) interest and the theoretical (concep-

tual) interest in species’ invasions distill down to the same question: to what 

degree can the geographic course of species’ invasions be anticipated based 

on scenopoetic variables and biotic interactions? As will become clear in this 
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chapter, the answer is neither simple nor straightforward, but the effort has 

certainly been informative and educational.

CONNECTION TO THEORY

Several points from chapters 2 and 3 earlier in this book are central to the inva-

sive species question. First, species do not generally occupy the entire spatial 

footprint of their potential distributions (GP), but rather are limited to some 

subset of that potential by historical barriers to dispersal  (related to M) and 

potentially by biotic limitations (related to B). This subset is GO, and we expect 

that GO ⊆ GP—indeed, when the spatial extent of the analysis (G) is broad, the 

expectation is that GO will be much smaller than GP, because species’ distribu-

tions are highly constrained by dispersal limitation s, especially at continental 

or global extents.

A key insight is that understanding species’ invasions in a niche modeling 

context may require inclusion of the role of biotic interactions in shaping spe-

cies’ distributions. That is, B in the BAM diagram plays a critical role in deter-

mining whether a model based on a species’ distribution and ecology in one 

region will be able to anticipate its distribution in a novel region (e.g., a dif-

ferent continent). If B is so broad as essentially not to limit the species’ distri-

bution (the Eltonian Noise Hypothesis ), or if the environmental structure of B 

(i.e., the community context) is comparable between regions, then a niche model 

calibrated in one region should be predictive of its distribution and ecology in 

another. This assertion is of course subject to the conditions that the models are 

well-calibrated and not substantially biased, and that the genetically determined 

elements of the scenopoetic existing fundamental niche EA of the species do 

not differ between the native-range population and the invasive populations 

(meaning that scenopoetic niches are conserved). The fact that many niche 

models have shown excellent predictivity regarding the geographic potential of 

species’ invasions suggests that, at biogeographic extents and coarse spatial 

resolutions, B does not frequently present a strong constraint on species’ dis-

tributions. On the other hand, the massive and sometimes pervasive effects that 

some invasive species have on elements of native biotas attest to the opposite.

PRACTICAL CONSIDERATIONS

The basic approach to understanding species’ invasions using ecological niche 

modeling is simple. The idea is to use occurrence records of the species in one 
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region to calibrate models, and to then project those niche models onto other 

regions, where the species may or may not be invasive at present. These steps 

may be applied to regions where the species has already invaded, to test for 

changes in the scenopoetic existing fundamental niche or in B (Broennimann 

et al. 2007), or they may be applied to regions where the species has not yet 

invaded, to assess risk and identify areas particularly susceptible to that par-

ticular species based on A (López-Darias and Lobo 2008).

Most invasive-species applications of niche modeling so far have been based 

on models calibrated on native-range occurrence data and environmental data 

(Peterson 2003a), although some efforts basing models on invaded-range areas 

are beginning to appear (Anderson et al. 2006, Roura-Pascual et al. 2006, Broen-

nimann et al. 2007, Fitzpatrick et al. 2007, Kluza et al. 2007). Calibration on 

the native range serves to identify the overall dimensions of the species’ eco-

logical niche, and is particularly attractive because the species’ distribution is 

more likely to be in equilibrium in the native range than in invaded areas (Pe-

terson 2005b).

If the purpose of the analysis is to identify susceptible areas in a novel re-

gion, however, incorporation of additional information into the analysis may 

be useful and informative (e.g., information on life history traits and dispersal 

abilities; Dullinger et al. 2009). Many invasive species have multiple invasive 

ranges, in other regions or on multiple continents. To the extent that occurrence 

data from the native range are representative of the fundamental scenopoetic 

niche, and that the Eltonian Noise Hypothesis holds, and that B is similar among 

areas, the niche model will be the same, whether or not occurrence records 

from invaded areas are included in model calibration. However, failing these 

ideal conditions, calibrating models on both invaded and native ranges can in-

form models more completely, since occurrence records from the invaded range 

may reveal parts of the fundamental scenopoetic niche not represented on the 

native range (Beaumont et al. 2009). In contrast, models calibrated using re-

cords only from the invaded range, or a portion of it, are unlikely to capture the 

full extent of the scenopoetic existing fundamental niche  EA, and this incom-

plete characterization must be taken into account in interpreting model results 

(Anderson et al. 2006). Inclusion of true-absence data in model calibration 

appeared to improve predictions in invaded ranges (Vaclavik and Meentemeyer 

2009), although the many caveats expressed in chapter 4 regarding absence 

data must be considered carefully.

Perhaps an ideally comprehensive analysis would incorporate all of these 

dimensions in a single broad consideration (Jiménez-Valverde et al. 2011). A 

model calibrated on the native range can outline the general dimensions of 

the scenopoetic existing fundamental niche of the species. This model can be 
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validated initially within the calibration region via spatially stratifi ed subsetting , 

and then projected to the various invasive distributional areas; comparisons 

among modeled niches in those areas allows a clear test of the hypotheses that 
niche dimensions have not changed (Warren et al. 2008). Once the model is 

evaluated and the level of niche conservatism in the particular species is under-

stood, fi nal models can incorporate both native-range and invaded-range infor-

mation, with validation via something akin to k-fold cross validation among 

these distributional areas (see chapter 9; either with unequal sample sizes in 

each pool, or by achieving equal sample sizes via rarefaction). Projection of 

this validated suite of models to areas of particular interest then makes possible 

detailed and validated inferences regarding the invasive potential of the species.

REVIEW OF APPLICATIONS

Predictions of the invasive potential of species and tests of the ability of eco-

logical niche models to anticipate this potential are now numerous in the scien-

tifi c literature (e.g., Panetta and Dodd 1987, Honig et al. 1992, Richardson and 

McMahon 1992, Scott and Panetta 1993, Beerling et al. 1995, Martin 1996, Hig-

gins et al. 1999, Golubov et al. 2001, Hoffmann 2001, Soberón et al. 2001, Welk 

et al. 2002, Papeş and Peterson 2003, Peterson et al. 2003a and 2003b, Peter-

son and Robins 2003, Iguchi et al. 2004, Robertson et al. 2004, Fitzpatrick and 

Weltzin 2005, Hinojosa-Díaz et al. 2005, Thuiller et al. 2005b, Mohamed et al. 

2006, Nyári et al. 2006, Benedict et al. 2007, Peterson et al. 2007d). As such, 

this functionality has gathered steam in application after application, based at 

least in part on its success so far.

A recent analysis of the global invasion by the tiger mosquito Aedes albop-
ictus (Benedict et al. 2007) illustrates the modeling process (fi gure 13.1). A 

survey of the scientifi c literature accumulated occurrences of this species from 

across its putative native range in Southeast Asia and offshore islands, and an 

ecological niche model was built using GARP based on that information and 

climatic datasets. This prediction of a likely native occupied distributional area 

GO extended across tropical and subtropical China, west into tropical India, and 

southward into Indonesia.

Projecting this ecological niche model globally identifi ed a hypothesized GI 
(now effectively part of GO post-invasion), and the authors then overlaid avail-

able invaded-range occurrence data from several regions—the example of the 

United States is shown in fi gure 13.1. Clearly, the coincidence between the pre-

diction (based only on the ecological niche model built from occurrence patterns 

in Southeast Asia) and the independent test dataset (i.e., U.S. counties where 
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Figure 13.1. An analysis of the global invasion by the Asian tiger mosquito 

Aedes albopictus (redrawn from Benedict et al. 2007). Upper panel: White squares 

indicate known occurrences from the native range, and dark shading of land areas 

shows the areas predicted as suitable by a niche model calibrated using these sites. 

Lower panel: Projection of the native-range niche model to North America identi-

fi ed areas matching the species’ niche ecologically in North America (i.e., belonging 

to the potential distributional area GP; shown as dark shading); known occurrences 

at the level of counties known to hold populations is shown superimposed.

HighLow

Predicted Suitability

Predicted Suitability

HighLow
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the species has been detected as invasive) is excellent and much better than 

random expectations. Particularly attractive about this analysis is that, by fo-

cusing on invaded areas outside GP (i.e., sink populations ). the authors “identi-

fi ed” counties in which the species was detected but did not persist—that is, 

essentially all of the counties where the species was detected outside of the 

limits identifi ed in the niche model based on its native range occurrences did 

not support viable long-term populations. As such, in effect, this species obeys 

the same ecological “rules” in its invaded range in the United States (and else-

where) as it does in its native range in Asia.

In another example, Thuiller et al. (2005b) used niche models to identify 

areas of the world that are potentially susceptible to invasion by 96 plant spe-

cies native to South Africa. The accuracy of the predictions was assessed for 

three example species using presence-only records from their non-native dis-

tributions in Europe, Australia, and New Zealand. For each of the test species, 

predictions of suitable areas outside South Africa showed considerable agree-

ment with observed records of invasions, again supporting the notion that niches 

in native and invaded ranges are similar.

A few ostensibly negative counterexamples have appeared in the literature 

in recent years. In particular, recent analyses of fi re ants (Solenopsis invicta; 

Fitzpatrick et al. 2007) and spotted knapweed (Centaurea maculosa; Broenni-

mann et al. 2007) have revealed what was interpreted by the respective authors 

as lack of predictivity between ecological niche models calibrated on native 

and invaded distributional areas. In each case, the authors attributed the lack of 

predictivity to evolutionary change in the species’ ecological niche between the 

two sets of populations.

However, in both cases, methodological and artifactual explanations also 

exist. For example, the fi re ant analysis (Fitzpatrick et al. 2007) was built based 

on 19 climate dimensions. A subsequent analysis (Peterson and Nakazawa 

2008) using a simpler environmental space E (i.e., one that was less highly di-

mensional), however, found excellent predictivity between native and invaded 

ranges of the species (fi gure 13.2), suggesting an alternative explanation to the 

original conclusion of evolutionary differentiation. Rather, the picture appears 

to be one of overfi t models that could not “transfer “ effectively to the novel 

distributional area. A situation of this sort can be mitigated by stratifying vali-

dations spatially within the native range prior to any exercises involving trans-

ferability (see chapter 9).

Another reason why conclusions regarding niche shifts may be artifactual 

is that of the reduction of the fundamental niche to different existing manifes-

tations in different regions of the world where the structure of climatic space is 

different. For example, in transferring niches from a native distribution that 
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covers all of North America to an invaded distribution that is the island of Oahu 

only, even though the fundamental niche remains unchanged, the portion of 

that niche that is manifested across North America versus on Oahu is quite dif-

ferent. Techniques such as inertia analysis (Doledec et al. 2000; as employed 

in Broennimann et al. 2007) will detect these differences as niche shifts, but the 

attribution of evolutionary change in causing the shifts is incorrect.

Niche shifts—be they the result of genuine evolutionary change in niche di-

mensions (i.e., change in EA) or the result of differences in B between continents 

(i.e., producing changes in EP)—are certainly possible. However, considerable 

methodological diffi culties remain in characterizing niche shifts, particularly 

concerning the potential to “overfi t” models (see, e.g., Peterson and Nakazawa 

Figure 13.2. Analyses of the global potential distribution GP of the red fi re ant 

(Solenopsis invicta), showing the results obtained by analysis with different envi-

ronmental datasets. Panels A and B show results from models calibrated in 19 

climatic dimensions and show considerable underprediction and omission error 

(Fitzpatrick et al. 2007); however, panels C to F are calibrated in simpler environ-

mental spaces and show broader predictions that accord much better with real-world 

invasion extents. Redrawn from Peterson and Nakazawa (2008).
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2008) or using misleading variables (Rödder et al. 2009), and further explora-

tion of this topic is required. Perhaps the most convincing example is that of 

marine and freshwater invasions by diverse invertebrates, where physiological 

and genetic studies have revealed the effects of natural selection on ecological 

tolerances of invading populations (Lee 2002, Lee et al. 2007), although these 

situations have not yet been analyzed in terms of coarse-resolution environ-

mental variables such as those generally used in niche modeling applications. 

As such, while rapid niche shifts are certainly possible (Boman et al. 2008), 

and indeed are quite fascinating when found, much work remains to establish 

protocols for documenting this phenomenon appropriately.

A further step in exploring the utility of ecological niche models in under-

standing species’ invasions is to use the predictive power of ecological niche 

conservatism to anticipate likely changes in the distributional potential of in-

vasive species under scenarios of changing environmental conditions. Roura-

Pascual et al. (2005) analyzed likely effects of global climate change on the 

potential global distribution of the Argentine ant (Linepithema humile). Calibrat-

ing niche models on the species’ native range in South America, the authors 

then projected that model onto global climate estimates derived from general-

circulation model outputs for the year 2055 to produce a map of GP for the ant 

at that time. The resulting maps identifi ed areas of possible further invasion 

over coming decades by this species (fi gure 13.3).

These approaches can be developed further into what are, in essence, risk 

analyses associated with invasion of particular regions by species from other 

regions. For example, the Australian government implemented a broad pro-

gram of evaluation of invasive potential of Australian invasive plants (Aus-

tralian Weed Committee 2008), which provides visualizations of the potential 

distribution of each species. Similar risk assessments have been developed at 

global scales. For instance, Thuiller et al. (2005b) summed predicted distribu-

tions for all 96 South African species that they studied, and produced a global 

map of invasion risk by species of South African origin. Sites identifi ed as 

being at high risk may be prioritized for monitoring, and quarantine measures 

could be put in place to help avoid the establishment of these species. This 

approach thus in general shows enormous promise for anticipating threats to 

human and natural systems from invasive species.

CAVEATS AND LIMITATIONS

A U.S. National Academy of Sciences report (NAS 2002) assessed the degree 

to which species’ invasions are “predictable.” The study examined questions 
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such as which species are likely to become invasive, when will they arrive, how 

fast will they spread, and how damaging or dominant they are likely to become. 

The panel’s conclusion was that species’ invasions are mostly unpredictable, a 

conclusion with which we largely concur.

Figure 13.3. Illustration of the potential for forecasting changes in the invadable 

distributional area GI through time, with changing climates, showing the example 

of the invasive Argentine ant Linepithema humile (Roura-Pascual et al. 2005), 

including areas currently suitable and areas of projected potential retraction and 

expansion.

Present range

Potential for expansion

Areas of declining suitability

Predicted suitability

low high
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A subsequent review, however, aimed to clarify the situation (Peterson 

2003a). It is true that the overall course of species’ invasions is extremely dif-

fi cult to anticipate, and that detailed questions such as those mentioned earlier 

are unlikely to be answerable. Nonetheless, one feature of species’ invasions 

is frequently predictable—the possible extent  of the invasion, or GI—that is, 

given the scale distinctions between Grinnellian and Eltonian niches (Soberón 

2007), and given the pervasive nature of ecological niche conservatism, at least 

on relatively short timescales, ecological niche models offer considerable pre-

dictivity as to where the species is likely to be distributed if and when it arrives 

and becomes established in the region.

The keys to appropriate application of niche modeling ideas in this realm 

are those of understanding clearly the assumptions inherent in such applica-

tions, and of evaluating model performance rigorously in the native range prior 

to interpretation of the results. That is, the assumptions of conservatism in 

niche dimensions and B being either very broad or based on comparable inter-

actions among regions must be tested to whatever extent possible in a given 

situation, and models should be interpreted only after such evaluation has dem-

onstrated the model’s predictive ability.

FUTURE DIRECTIONS AND CHALLENGES

A clear priority in this realm of applications of niche modeling is that of iden-

tifying and understanding genuine exceptions to ecological niche equivalency 

between native and introduced ranges of species. The several studies that have 

asserted niche shifts between native and introduced populations (Broennimann 

et al. 2007, Fitzpatrick et al. 2007, Medley 2010), as argued earlier, may not be 

convincing demonstrations of niche shifts, as they do not reject the alternative 

possibility of methodological artifact (Peterson and Nakazawa 2008). None-

theless, if examples of evolutionary niche shift can be found, and documented 

rigorously, careful examination of those cases would be enormously informa-

tive. Certainly, clarifi cation of the circumstances under which genuine niche 

evolution occurs would be interesting, as a counterpoint or corroboration to 

the theoretical results that suggest that they might evolve most easily in species 

with certain population characteristics (Holt and Gaines 1992).

A further future challenge is that of transgenic organisms. Such organisms 

are now commonly developed and used in agricultural applications (Tiedje et 

al. 1989), and these situations require careful analysis and detailed risk assess-

ment (Regal 1994). Although traditional niche modeling approaches may not 

short
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be entirely applicable because no prior experience (i.e., occurrence data) with 

the “species” is available, there are nonetheless possibilities—the idea of mod-

ifying niche models of nontransgenic ancestors to mimic the modifi cations to 

the genomes may hold some promise. Certainly, though, addressing this chal-

lenge will be an important step forward as prototypes are developed.
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The Geography of Disease Transmission

Zoonotic diseases (i.e., diseases that circulate in the animal world, occasion-

ally affecting humans or other species of interest) are by defi nition a phe-

nomenon of interactions among species. That is, the pathogen itself is a virus, 

bacterium, fungus, protozoan, or other small-sized species. Another (usually) 

larger-bodied species often serves as the reservoir species for that pathogen, 

holding a long-term pool of pathogen populations in a cycle of transmission 

and infection. Finally, other species (often arthropods or mollusks) may serve 

to move the pathogen from one individual of the reservoir species to another, 

or from the reservoir to humans—these species are termed “vectors.”

An example disease transmission cycle, that of plague (Yersinia pestis), is 

shown in fi gure 14.1. As such, disease applications often differ from other ap-

plications of ecological niche modeling in that interactions among species can 

be very important and complex—that is, the Grinnellian and Eltonian perspec-

tives intermix in this arena very frequently (Peterson 2008a). It is important to 

note that each of the interacting species likely has a different scenopoetic exist-

ing fundamental niche EA, and differences of scale may be enormous (patho-

gens may be capable of movements of millimeters, whereas some reservoirs are 

capable of movements on global scales; Kilpatrick et al. 2006, Peterson et al. 

2007a). Thus, disease applications of niche modeling present some very real 

complications that challenge effective modeling and predicting.

These considerations lead to two different approaches to the challenge. 

First, it is certainly possible to integrate across the entire transmission system, 

treating it effectively as a “black box,” and simply analyze the ecological and 

geographic distribution of disease occurrence (in essence modeling the “niche” 

of the disease occurrence in humans or other species of interest as if it were 

a species; e.g., Yeshiwondim et al. 2009). This approach subsumes all of the 

ecological requirements of the individual component species, as well as any 

ecological biases in their interactions—as such, key details may be lost in the 

process. However, in some cases, illustrated later, human case locations are 

the only information that is available, so analysis of the “niche” of the entire 

short
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transmission system is the only option available (Peterson et al. 2004a, Ron 

2005, Reed et al. 2008, Williams et al. 2008).

Perhaps more satisfying, however, is the idea of parsing the overall trans-

mission cycle into the ecological niches of the individual component species. 

This approach offers the opportunity to distinguish different reasons for pres-

ence or absence of disease transmission in an area: transmission may be absent 

for lack of the pathogen, for lack of an appropriate vector, or for lack of an ap-

propriate reservoir (Peterson 2007a), or because of rarity of any one of them. 

For example, in situations in which appropriate vectors and reservoirs are in 

place, introduction of the pathogen can lead to immediate transmission and 

spread, as was the case with the arrival of West Nile virus in North America 

in 1999 (Komar 2003). Certainly, these techniques can also be applied to the 

Figure 14.1. An example disease transmission cycle, showing how plague (Yer-
sinia pestis) is transmitted in North America, and illustrating the involvement of 

various elements of biodiversity in the transmission. Image courtesy of Neal R. 

Chamberlain, PhD, A.T. Still University/Kirksville College of Osteopathic 

Medicine.

short
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hypothetical situation of “bioterrorism” in the form of introduction of novel 

pathogens into a region with the intent to do harm to humans or other species 

of interest (Bhalla and Warheit 2004).

Applications of ecological niche modeling approaches to the challenge of 

understanding the geography and ecology of disease transmission are in an 

early stage. In general, most present applications fall in the category of “black 

box” analyses (e.g., Peterson et al. 2006a), as the necessary occurrence data are 

more readily available. A few efforts, however, have treated component species 

independently (Peterson et al. 2002c, Peterson et al. 2004b), which has poten-

tial to offer considerable novel insight into the ecology and geography of the 

transmission of the diseases in question.

Niche modeling has a lot to offer to the fi eld of public health and epidemiol-

ogy. Particularly relevant, the fi eld of “spatial epidemiology” or “landscape 

epidemiology” has emerged in recent years, and a standard suite of tools and 

approaches has been achieved (Elliott et al. 2000). Typical spatial epidemio-

logical applications include mapping geographic patterns of disease transmis-

sion risk, identifi cation of risk factors (spatially or not), and assessment of 

populations at risk of infection. Tools used for these analyses include spatial 

regressions, smoothing procedures such as splining and kriging, and more con-

ventional multivariate regressions, all developed chiefl y in spatial dimensions 

(Kitron 1998). As readers of this book will appreciate, these tools do not cap-

ture the full complexity of the phenomenon of disease transmission because 

they are fi tted in purely geographic dimensions, and as such distill complex 

ecological and distributional phenomena into broad spatial trends (Elliott and 

Wartenberg 2004), with expectedly unsatisfactory results.

Even when spatial epidemiological analyses are conducted more appropri-

ately (i.e., including environmental drivers underlying geographic distributions 

of disease phenomena in the analyses), tools are generally not used in such a 

manner that they emphasize generality and full representation of geographic 

distributions of species and other biological phenomena (Peterson 2007a). A 

clear illustration is that of analyses of the geographic distribution of Anopheles 
gambiae, an important malaria vector in Africa. Rogers et al. (2002) presented 

analyses of the distribution of this species that failed to predict its full GO, 

particularly in areas not sampled thoroughly; an analysis of the same dataset by 

Levine et al. (2004), however, painted a more complete picture—Rogers et al. 

(2002) underestimated the probability of presence of this vector species in 

areas of sparse sampling, whereas the niche model-based maps from Levine 

et al. (2004) are better able to predict across regions that have received differ-

ent levels of sampling effort. Hence, if spatial epidemiology is to capture and 

communicate the geographic details of disease transmission, the full complex-
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ity of drivers of species’ distributions must be considered, and tools must be 

used in such a manner that they capture the full relevant niches of all compo-

nents of the system that, in turn, can be projected onto the landscape and pro-

duce more realistic hypotheses of relevant distributional areas, even in areas that 

are not sampled thoroughly.

CONNECTION TO THEORY

The possible applications of niche modeling to understanding disease trans-

mission are diverse, covering much of the full gamut of applications of niche 

modeling in general. Under some circumstances, the focus is on characterizing 

GO (i.e., what is the current distribution of transmission of this disease?), 

whereas under other circumstances, the focus would be on characterizing GI 

(e.g., what is the potential for a particular pathogen to spread in this novel 

region?). Hence, applications of niche modeling to disease questions are very 

diverse and somewhat diffi cult to characterize specifi cally.

What is clear, however, is that disease transmission is by defi nition a situa-

tion in which biotic considerations are more dominant than in most other situ-

ations analyzed in this book (Peterson 2008a)—that is, A ∩ B may be small with 

respect to A in disease applications. Indeed, in some cases, A may prove so 

broad as to be irrelevant: consider infl uenza transmission among humans, which 

appears to be able to occur under extremely diverse environmental (in sceno-

poetic dimensions) circumstances (Brankston et al. 2007). As such, we could 

consider each element in a disease transmission system (species 1, 2, . . . , n) to 

have its own particular version of A (which we can denote Ai). Disease trans-

mission would then occur only within the area delineated by A
1
 ∩ . . . ∩ An. 

From the perspective of any single species in the transmission system for the 

disease, the combined intersections of the A’s for all component species in the 

system are integrated into a single B, making the simple BAM diagram  frame-

work much more complex (Peterson 2008a).

PRACTICAL CONSIDERATIONS

The diversity of questions and challenges in applications of ecological niche 

modeling to disease-related questions makes for the need for incorporation of 

diverse methodologies and practical considerations. No comparative studies of 

modeling approaches have as yet focused on disease systems, so this question 

remains relatively little explored.
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Many disease applications of ecological niche modeling (as in all other ap-

plications) are, in the end, severely constrained by the availability and quality 

of occurrence data. For example, occurrence data that could be obtained for 

analyses of the geography of potential transmission of Marburg virus across 

Africa varied from relatively precise (e.g., accurate within 1000 m) to laugh-

ably coarse (i.e., somewhere in the country of Zimbabwe; Peterson et al. 2006a), 

yet the latter occurrence turned out to be critical in understanding the biotic 

interactions of this virus (Peterson et al. 2004b, Peterson et al. 2007b). In other 

situations, such as when the focus of modeling is on small-bodied, ephemeral 

arthropod vector species, temporal resolution ends up limiting the analyses 

that are possible. Such was the case in recent analyses of dengue virus vector 

distributions in Mexico (Peterson et al. 2005a), in which mosquito species’ dis-

tributions were dramatically different from month to month over the course of 

a single year.

A recent commentary attempted to propose a solution to problems with 

coarse geographic referencing of disease occurrences, suggesting refi nement of 

reporting procedures regarding locations of disease occurrence (Eisen and Eisen 

2007). Current geographic referencing procedures for “reportable” diseases in 

the United States (note that comparable problems exist globally) involve not-

ing simply the state and county (or equivalent tertiary political divisions) of 

origin (e.g., where the sick person lives), but county extents (1) are often quite 

coarse spatially, and (2) vary regionally in their resolution (e.g., counties in the 

western United States are much larger than those in the eastern United States) 

and environmental heterogeneity—this resolution has proven limiting in past 

attempts to model such diseases (Nakazawa et al. 2007). Nonetheless, the 

solution proposed (Eisen and Eisen 2007) was that of shifting from counties to 

either zip code areas or census tracts, which (although smaller) are similarly 

polygon-based (i.e., not point-based) and uneven in size of the spatial foot-

print. A better solution would be to move to a point-based georeferencing ap-

proach with uncertainty expressed as an error radius (Wieczorek et al. 2004), 

which permits fl exible use of the occurrence data across diverse spatial resolu-

tions (Peterson 2008b). The result would be a data resource that would be much 

more supportive of detailed analyses at many spatial extents and resolutions, 

limited of course by considerations of confi dentiality as may be necessary.

REVIEW OF APPLICATIONS

Characterizing Disease Ecology

For many diseases and associated causal pathogens, little is known of the basic 

environmental factors associated with their transmission. Such diseases can 

long
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have very few known occurrences, limiting what can be learned from simple 

geographic intuition. For example, Marburg virus is known only from about 

seven occurrences since its original appearance in the 1960s in laboratory mon-

keys imported into Germany. Ecological niche modeling approaches helped to 

clarify the ecological circumstances under which Marburg has emerged (even 

based on such minimal sample sizes), to the point that the likely geographic 

point of origin of the southernmost known occurrence was revised by several 

hundred kilometers (Peterson et al. 2006a).

In a different context, ecological niche modeling has been used to character-

ize ecological niches of four related, putatively distinct species of triatomine 

bugs that are vectors of Chagas disease in Brazil (Costa et al. 2002). Ecological 

differences in niche were added to the list of phenotypic features of these bug 

populations that differentiate them, apparently at the level of species (Costa et 

al. 1997). These distinct populations differ in their capacity as vectors of Chagas 

disease, so these results have important implications for mitigation measures. 

Other ecological niche modeling studies have similarly characterized ecologi-

cal niches of poorly understood diseases (Levine et al. 2007, Reed et al. 2008).

Characterizing Disease Distributions and Risk Mapping

A parallel challenge for ecological niche modeling applications to disease sys-

tems is that of characterizing a full distributional picture for poorly understood 

disease systems. For example, the disease blastomycosis is caused by the en-

demic (which in the epidemiology literature means locally established for long 

time periods, as opposed to epidemic—present only for relatively short bouts 

of time) dimorphic fungus Blastomyces dermatitidis, and is known to occur 

broadly across eastern North America. In spite of its occurrence in relatively 

prosperous regions, the details of where it occurs—and where transmission 

to humans can occur—have remained obscure. Figure 14.2 shows the results 

of application of niche modeling to anticipating the geographic distribution of 

this disease across Wisconsin (Reed et al. 2008). Other such applications have 

focused on spatial distribution of transmission of Ebola and Marburg viruses 

(Peterson et al. 2004a, Peterson et al. 2006a), Chagas disease (Beard et al. 

2003, López-Cárdenas et al. 2005), cutaneous leishmaniasis (Peterson and 

Shaw 2003, Peterson et al. 2004d), visceral leishmaniasis (Thomson et al. 

1999), monkeypox (Levine et al. 2007), malaria (Moffett et al. 2007), highly 

pathogenic avian infl uenza (Williams et al. 2008), frog fungal diseases (Ron 

2005), and even plant diseases (Kluza et al. 2007). A recent analysis of the eco-

logical characteristics of the only two known sites of occurrence for a potential 

Chagas disease vector, Triatoma sherlocki, yielded predictions that led to the 

successful detection of at least fi ve additional populations of the species (Al-

meida et al. 2009).

long
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Niche modeling applications to such questions require careful validation, so 

that the models indeed have predictive power when applied to novel landscapes 

(i.e., are transferable). Of particular importance, given the often-sparse occur-

rence data available for such applications, is spatial stratifi cation into calibra-

tion and evaluation datasets, such that models must predict reliably into areas 

from which occurrence data are not used in calibration (see chapter 9). Then, 

niche models and the associated spatial predictions can be evaluated in terms 

of their predictive ability prior to their potentially being used in any particular 

public health remediation measure.

True risk-mapping, however, has a more realistic human fl avor—that is, while 

niche models may be used to characterize the geographic distributions (e.g., 

GA, GP, GI) of a particular pathogen, vector, or reservoir, risk maps must in-

clude the additional factors that modify the translation of the presence of those 

species into human exposure and genuine disease transmission (Lawson et al. 

Figure 14.2. Example of prediction of the potential distributional area GP (grays) 

for human exposure to the dimorphic fungus Blastomyces dermatitidis across 

Wisconsin, in the United States. Black dots are sites of known human infections. 

Redrawn from Reed et al. (2008).
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1999). To our knowledge, no disease has seen a complete risk mapping effort 

based on niche model results.

Characterizing Potential Distributions

An additional suite of applications of niche modeling to disease biology is in 

understanding potential distributions GP of pathogens or other individual com-

ponent species in transmission systems. It is, of course, possible also to apply 

this line of reasoning to “black box” situations (i.e., the entire transmission 

system), but the link to environmental conditions becomes increasingly indi-

rect, component species in the transmission system may or may not be present, 

and predictive ability may consequently be limited. That is to say, although en-

vironmental conditions may match closely, disease transmission systems none-

theless can depend critically on the presence or absence of suites of individual 

species, which likely have distinct Ms and thereby augment the complexity of 

the BAM diagram considerably. As such, characterizations of potential distri-

butions of disease transmission systems are ideally based on niche models of 

individual species, as discussed earlier.

These analyses, hence, are very similar to the numerous examples reviewed 

in chapter 13, which treats niche modeling applications to invasive species. 

Among the best such applications to disease-relevant species is the analysis 

by Benedict et al. (2007) of the invasion by Asian tiger mosquitoes (Aedes ae-
gypti) into North America. This work is described in detail in chapter 13.

Recent concerns regarding the potential for intentional introduction of patho-

gens (Broussard 2001, Cunha 2002, Bhalla and Warheit 2004) further empha-

size the importance of such analyses. In effect, many areas may be ecologically 

suitable for transmission of particular diseases, with competent vectors and 

hosts already in place, and lacking only the presence of the pathogen for trans-

mission to initiate. For example, in 2003, monkeypox virus was introduced 

into North America via African small mammals imported for sale as exotic pets 

(Reed et al. 2004). The virus rapidly “jumped” into native mammals also in 

captivity for sale as pets, and has every appearance of being able to spread 

in wild North American mammals. Similar examples of the potential for patho-

gens to behave as invasive species are provided by the recent outbreaks of West 

Nile virus and SARS in North America. Niche models can in principle be used 

to assess such potential for spread of novel pathogens.

Forecasting Climate-Mediated Shifts

Another dimension, albeit very little explored, of the geographic ecology of 

disease transmission is that of how current disease transmission patterns are 

likely to change in the face of ongoing global climate change. This area may 
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prove particularly important given that transmission of many diseases de-

pends on small, ephemeral arthropod vectors that are likely to prove particu-

larly sensitive to changing climatic conditions. Once again, given the complex 

environment-transmission chain in disease systems, niche modeling approaches 

may be as useful in “black box” situations. As might be expected, considerable 

speculation has been offered in the literature as to how these shifts might be 

manifested (Kovats et al. 2001, Hunter 2003), although only a few actual analy-

ses have been developed to date (Hay et al. 2002, Peterson and Shaw 2003, Van 

Lieshout et al. 2004, Nakazawa et al. 2007, Peterson 2009, González et al. 2010).

Peterson (2009) analyzed the spatial footprint of distributions of the two 

most important vectors of malaria across Africa, the species Anopheles gam-
biae and A. arabiensis, over scenarios of future climatic conditions. He docu-

mented the expected shifts of potential distribution (future GP) both poleward 

and upward in elevation (fi gure 14.3), and then related the areas of likely re-

duced distribution (future GP in comparison with current GO) and areas of likely 

invasion to human population distributions (future GI in comparison with cur-

rent GO). The result was a picture in which 11% to 30% fewer people overall 

will likely be exposed to malaria in coming decades, but reductions and in-

creases are focused in different regions: malaria exposure is likely to decrease 

in West Africa but increase in eastern and southern Africa. Such analyses can 

begin to provide specifi c quantitative estimates, whereas previous literature was 

restricted largely to speculation and generality.

Figure 14.3. Summary of projections of likely changes in the occupied distribu-

tional areas of the two most important mosquito vectors of malaria across Africa, 

Anopheles gambiae and A. arabiensis. The fi rst panel presents human population 

density, showing clear concentrations in West Africa, as well as parts of eastern 

and southern Africa. The second and third panels show projected shifts—black 

areas are areas of reduced future suitability, dark gray areas are areas of increased 

future suitability, and middle gray areas see little change. Redrawn from Peterson 

(2009).

Human population Anopheles gambiae Anopheles arabiensis
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Discovering Unknown Interactors

As discussed earlier, disease transmission can be conceptualized as the inte-

gration of the various ecological niches and distributions of each of the spe-

cies participating in the transmission cycle. Under this view, when one of 

those species is unknown, ecological niche modeling can be used in a more 

exploratory sense to narrow possibilities and hypothesize which species may 

be involved.

For example, considering Chagas disease transmission across Mexico, the 

Triatoma protracta species group of true bugs includes several important vec-

tors (Usinger et al. 1966). However, the rodent hosts of several of these bug 

species remain unidentifi ed or poorly documented. Peterson et al. (2002c) re-

lated modeled distributions of triatomine species in this complex to those of 

their putative hosts—Neotoma packrats. They used distributional coincidence 

among the GP for each species estimated from niche models as a measure of 

niche similarity, and successfully “anticipated” all fi ve already-documented bug-

rodent associations. Similar analyses have focused on associations between 

fi loviruses (Ebola and Marburg viruses) and diverse African mammal species 

(Peterson et al. 2004b, Peterson et al. 2007b).

CAVEATS AND LIMITATIONS

Disease applications of niche modeling are particularly challenging for a num-

ber of reasons. We have already mentioned the special features of these situa-

tions, in which biotic interactions are probably much more important in driving 

distributions in space and time than in many other applications of niche model-

ing. Those considerations demand several methodological adjustments to avoid 

useless or misleading results.

First, it is important to consider carefully the biases inherent in public health 

data. Detection biases can be strong, emphasizing rich versus poor regions or 

countries, or cities versus rural situations. Indeed, even political considerations 

enter the picture—for example, the People’s Republic of China has often been 

reticent to make public its disease emergences (Breiman et al. 2003), which 

can bias ecological analyses based on available data. Second, public health data 

often have only a very coarse spatial resolution (Eisen and Eisen 2007), lead-

ing to numerous diffi cult challenges for attempts to produce predictive models 

at spatial resolutions suffi ciently fi ne as to be useful (see discussion earlier 

regarding occurrence data). These complications have led to some unorthodox 

methodological approaches in niche modeling that nonetheless may be of some 

broader utility, including using random points as representatives of disease 
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occurrences when occurrences are referenced to polygons or in situations of 

uncertain georeferencing (Peterson et al. 2006a, Nakazawa et al. 2007).

More relevant is that with such real-world challenges, being correct is ex-

tremely important. For example, an overfi t risk map may give statistically sig-

nifi cant evaluation statistics with a randomly split sample approach; yet, such 

a result, as it may not be fully predictive of the geographic potential of the spe-

cies, may mean that mitigation efforts are not extending over the full potential 

distribution of the disease. Effectively, some people might end up going un-

protected, as in the example of overfi t malaria vector models described earlier 

(Rogers et al. 2002), or being put at risk unnecessarily, simply because a model 

was not calibrated or evaluated appropriately.

Still more challenging is the complexity with which diseases themselves 

interact. For example, Gyapong et al. (2002) produced a prediction (black box 

style) of the likely distribution of lymphatic fi liariasis in West Africa; another 

paper examined the distribution of the related disease loa loa (Thomson et al. 

2000). Getting the relative distributions of these two diseases correct is critical—

good prophylaxis exists that protects against fi liariasis, but administration of 

those drugs to a person infected with loa loa causes reactions that are frequently 

fatal (Thomson et al. 2000). As such, niche model applications must correctly 

identify areas where fi liariasis is transmitted but loa loa is not—such situations, 

in which human lives depend on being “right,” should give pause to the pro-

spective modeler planning an analysis.

FUTURE DIRECTIONS AND CHALLENGES

Applications of niche modeling techniques and ideas in the public health and 

disease arena need to progress along at least three lines. First, real-world, prac-

tical applications that demonstrate concretely the potentially enormous utility 

of accurate distributional and ecological information will go a long way toward 

“selling” the idea of careful modeling based on species-level ecological con-

siderations and biogeographic thinking. These “proofs of concept” speak for 

themselves—when well executed, disease experts can ponder the insights gained, 

and respond accordingly.

Second, it is important to compare and contrast the relative advantages and 

disadvantages of niche modeling approaches as compared with the purely 

spatial techniques currently in vogue in landscape epidemiology. The former 

offers two major advantages: (1) simple smoothing (i.e., fi tting “models” in G 

only) will miss the fi ne-resolution complexities that are probably universal in 

determining the fi ne points of where species are and are not found to occur, and 
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(2) the ability to transfer geographically via niche-based insights is completely 

absent in purely spatial approaches. Making these points clear to the epidemi-

ology and public health communities has begun (e.g., Peterson 2006a), but will 

still require considerable additional effort and argument.

Finally, the particular interests and needs of the disease world challenge 

the niche modeling community to develop particular functionalities of specifi c 

utility in disease applications. Foremost among these applications are what 

could be termed “time-specifi c” ecological niche models that could begin to 

capture the essence of the temporal dynamics of species’ distributions. In this 

case, occurrence data would be characterized in latitude, longitude, and time, 

and the occurrences would be related to environmental datasets that are simi-

larly specifi c in time to produce models for a particular point in time. These 

models could then, in theory, be projected to other time periods to anticipate 

time-specifi c dynamics of species’ distributions. One initial exploration has 

already been developed successfully (Peterson et al. 2005a), but considerable 

additional exploration is needed.
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Linking Niches with

Evolutionary Processes

As methods for modeling and understanding ecological niches and geographic 

distributions of species have become increasingly robust and well-understood, 

evolutionary biologists have begun to pay attention. That is because a critical 

dimension of the evolutionary biology of species is precisely their ecological 

requirements, as biogeography, distribution, and genetic variation all hinge 

rather critically on the ecological niche. Evolutionary studies of ecological 

niches have thus begun to appear in numbers, amplifying the diversity of chal-

lenges to which these techniques have been applied.

CHANGES IN THE AVAILABLE ENVIRONMENT

Since the envelope of environmental space available to a species [i.e., environ-

ments represented within M or η(M)] changes through time, to avoid extinc-

tion a species must either track the geographic extent of its scenopoetic exist-

ing fundamental niche, or be able to change it via evolutionary responses in 

physiological or behavioral traits (Holt 1990). One of the important advantages 

of expressing Grinnellian niches as subsets of an E-space is that the issue of 

constancy or change of the environmental substrate on which the niches are 

manifested becomes apparent (Jackson and Overpeck 2000, Ackerly 2003). For 

example, Jackson and Overpeck (2000) showed changes in what they termed 

the “Realized Environmental Space ,” our η(G) or E available in the study re-

gion, measured using two extreme temperatures in a G covering all of North 

America, from modern times back to 21,000 years before the present (fi gure 

15.1). The actual, existing environmental combinations of a species’ niche will 

shift in spatial location and extent, and a species must track suitable conditions, 

adapt to suboptimal ones, or go extinct.

The way in which species respond to these challenges is varied. Ackerly 

(2003) pointed out that the “leading” and “trailing” range edges may pose con-
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trasting selective pressures during episodes of change. Imagine the retreat of 

glaciers in the Northern Hemisphere and the associated northward advance of 

vegetation. Along the northern edge of the range, populations of these plant 

species would encounter habitats with few competitors but novel environmental 

conditions; along the trailing edge, however, populations experience already-

known environmental conditions and combinations of species already coadapted 

but with environmental conditions becoming unsuitable (Ackerly 2003, Brown 

et al. 2003). The selective pressures are bound to be different in these scenar-

ios. An extremely important question is whether populations can adapt quickly 

to changes in E-space or whether they must geographically “track” sites with 

the right conditions. When several correlated environmental variables that are 

Figure 15.1. Illustration of the changing climate conditions in North America at 

four points in time over the past 21,000 years. The black points in all panels show 

current-day conditions, while the gray points indicate the conditions at the given 

earlier period. Redrawn from Jackson and Overpeck (2000).
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indeed important for the species are considered, tracking them simultaneously 

may become impossible. Even without extinctions, when the scenopoetic fun-

damental niches of members of a community of species correlate in different 

ways with a suite of environmental variables, a change in climate may lead to 

wholesale rearrangements of species assemblies along gradients (Graham et al. 

1996), as illustrated in fi gure 15.2.

The preceding ideas illustrate the importance of understanding how fast 

species can adapt to environmental changes in G, which can take place over 

time spans of a few thousand years or even much shorter, over centuries or even 

decades (Balanyá et al. 2006). This process is that of niche evolution , although 

niches can evolve for other reasons not related to adaptation (e.g., owing to 

genetic drift or linkage with other traits under selection). This task would ap-

pear to be relatively innocuous: physiological tolerances and habitat associ-

ations are clearly features of the evolved phenotype of organisms (Angilletta 

et al. 2002). However, the concept of niche evolution as a consequence of the 

evolution of the broader phenotype forms the basis for many key insights from 

ecological niche modeling, and indeed, since some sort of conservatism in niche 

features would be required to make possible most of the predictions treated in 

the last several chapters of this book (Peterson 2006c), the success of those ap-

plications appears to provide evidence for conservatism (Peterson et al. 1999). 

Niche conservatism  has many implications (Wiens and Graham 2005), such 

as the feasibility of forecasting the geography of species’ invasions (Peterson 

2003a) and effects of climate change on species’ occupied and potential distri-

butional areas (Peterson et al. 2005b, Araújo and Rahbek 2006), and for under-

standing speciation processes (Wiens 2004).

Clearly, though, once we conceive of niches as evolving as part of the over-

all phenotype of the organism, considerable interest will focus on the circum-

stances under which niches have evolved. That is, if all niches were conserved 

strictly, then all of life would have the same ecological niche, which is clearly 

far from the case. Rather, ecological niches of species do evolve, and this diver-

sifi cation has been key in structuring life on Earth. Understanding the process 

of ecological niche evolution and diversifi cation would thus offer key insights 

into ecology, biogeography, and biodiversity. In this chapter, we offer com-

ments and ideas regarding how the notions of this book can be oriented toward 

addressing this challenge.

NICHE CONSERVATISM

A body of theoretical ecological work offers a framework in which to consider 

ecological niche evolution (Brown and Pavlovic 1992, Holt and Gaines 1992, 

long
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Kawecki and Stearns 1993, Kawecki 1995, Holt 1996a and 1996b, Holt and 

Gomulkiewicz 1996, Holt 2003). The essence of these arguments is captured 

by the following idea:  populations outside of the biotically reduced niche space 

(here, EP) of a species are “sink populations” (Pulliam 1988) that will eventu-

ally go extinct without immigration or adaptation (by defi nition, fi tness w is 

Figure 15.2. Illustration of how environmental change can affect species asso-

ciations. At time 1, existing fundamental niches of species 1 and 2 overlap, so the 

two can potentially coexist within that intersection. However, at time 2, the exist-

ing fundamental niches NF of the two species do not overlap, so they would not be 

able to coexist. Redrawn from Jackson and Overpeck (2000).
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less than unity). Other areas outside of M will be uninhabited, but could be 

colonized by invasive populations (i.e., in GI).

However, adaptation may take place as well. Using a series of models of 

rather different scenarios, Holt and Gomulkiewicz (1996) have shown that 

the adaptive process is, generally speaking, slower than extinction dynamics. 

Therefore, adaptation seldom rescues sink populations from extinction—in 

which case, evolution mostly takes place within NF. These models predict that 

a combination of large initial populations, small degrees of maladaptation and 

limited immigration rates from source populations are required for populations 

to adapt to new niche conditions (Holt 2009, Sexton et al. 2009). The spatial 

structure of the selective pressures is also predicted as an important factor driv-

ing niche evolution (Bell and Gonzalez 2009).

Empirical testing of niche conservatism and broader contemplation of the 

concept has now begun to fi ll out the picture considerably: niches act as long-

term stable, evolved constraints on species’ physiological tolerances and needs, 

as well as on their geographic distributions (Peterson et al. 1999, Martínez-

Meyer et al. 2004a, Nogués-Bravo et al. 2008b). The evidence for conservatism 

in ecological niche characteristics comes from diverse studies: geographic vari-

ation in niche characteristics across species’ ranges (Peterson and Holt 2003); 

comparisons of native and invaded ranges of invasive species (Peterson 2003a); 

longitudinal (i.e., over time) comparisons of niche characteristics within spe-

cies (Martínez-Meyer et al. 2004a, Martínez-Meyer and Peterson 2006, Waltari 

et al. 2007, Nogués-Bravo et al. 2008b); cross-phylogeny comparisons (Ack-

erly 2003, Martínez-Meyer et al. 2004b, Eaton et al. 2008); and transplant ex-

periments showing that fi tness is lower at the margins of distributions (Crozier 

2004, Angert and Schemske 2005). These diverse perspectives on niche conser-

vatism are reviewed later.

Obviously, despite their evolution, ecological niches are not wildly variable 

over evolutionary time periods. That is, physiologically challenging environ-

mental realms such as the air and land have been invaded only a relatively few 

times (Gordon and Olson 1994, Padian and Chiappe 1998, Larson 1982). On 

the fl ip side of the coin, however, Eltonian and Grinnellian niches, and major 

morphological and physiological traits that determine, for example, trophic po-

sition or other fundamental ecological adaptations, have obviously changed on 

some scale: marine organisms invaded land at several points in evolutionary 

history, and terrestrial clades have even invaded back into marine environments 

(e.g., sea snakes and whales). In this sense, ecological niches are not especially 

static, and do evolve, just not frequently or wildly (Holt 2009).

Of course, in most ecological niche modeling studies, more subtle ecologi-

cal changes are where the interest lies—that is, as with the broader panorama 
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of macroevolution versus microevolution (Wright 1982), what we now per-

ceive as macroevolutionary changes occurred far in the past, deep in evolution-

ary history, yet through microevolutionary processes (Lande 1986). As such, 

microevolutionary changes occurring in the recent past are much more tan-

gible, and certainly far more accessible to study and analysis, especially given 

the poor and uneven fossil record available for most groups. Microevolutionary 

ecological niche change, which we can defi ne for the purposes of this discus-

sion as relatively minor changes in ecological niche parameters that permit the 

occupation of new environmental situations and new distributional areas, are 

the focus of the remainder of this chapter.

TESTS OF CONSERVATISM

Within Distributional Areas

The simplest and most frequently applied test of niche conservatism is that of 

testing whether niche characteristics are constant across species’ geographic 

distributions. This idea quite simply builds niche models based on one sector 

of the occupied distributional area of a species and tests whether those niche 

models are predictive with respect to distributions in other sectors (i.e., equiv-

alent to spatially stratifi ed validation; Peterson and Holt 2003). Although the 

fi rst formal presentation of the approach as a test of conservatism (Peterson 

and Holt 2003) showed examples of nonconservatism, the vast bulk of the ex-

amples examined to date have shown conservatism—that is, different sectors 

of species’ distributions can reliably be predicted based on the remainder of 

the species’ distributions (Peterson 2001, Peterson 2005a), although counter-

examples exist (Raxworthy et al. 2008). A note of caution is that these tests 

must consider carefully the range of environments over which the model is 

calibrated, to assure that it is representative of the areas onto which the model 

is projected (see the discussion of transferability and extrapolation in chapter 

7), because if not, niche comparisons may not be valid (see chapters 7 and 9; 

Kambhampati and Peterson 2007, Peterson and Nakazawa 2008).

Species’ Invasions

Invasive species offer an additional level of complexity to testing ecological 

niche conservatism. Here, in addition to the element of spatial diversity pro-

vided by testing across different sectors of species’ geographic distributions, 

introduced ranges generally also present distinct biotic environments. In the 

context of the BAM diagram , if native- and introduced-range occupied niches 

EO are highly similar, then either A ⊂ B (the Eltonian Noise Hypothesis) or at 
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least features of B correlate closely with the variables used to defi ne A. In such 

situations, so a model based only on scenopoetic variables can recover a mean-

ingful and consistent biological signal about A ∩ B across very diverse regions 

(Peterson 2003a). Many such tests have been developed, and most with posi-

tive results—that is, native-range ecological characteristics generally have ex-

cellent predictive power regarding invaded-range distributions (Richardson 

and McMahon 1992, Martin 1996, Peterson and Vieglais 2001, Peterson et al. 

2003a, Peterson and Robins 2003, Iguchi et al. 2004, Hinojosa-Díaz et al. 

2005, Roura-Pascual et al. 2005, Thuiller et al. 2005b, Nyári et al. 2006, Zam-

brano et al. 2006, Benedict et al. 2007, Peterson et al. 2007d). Apparent excep-

tions to this predictive nature of species’ invasions are treated in chapter 13.

Chapter 13 presents invasive species applications of ecological niche mod-

eling in greater detail. The coincidence of the spatial extent of GI with the areas 

actually invaded by the species is impressive. Results of these studies suggest 

that (1) niches are frequently conserved across species’ invasions in ecological 

time, and (2) biotic interactions do not shift dramatically among distributional 

areas to the extent that predictivity is negated. (We note, however, that the 

species that do invade may be a nonrandom selection from the overall pool of 

possible invaders, though this possibility will require creative exploration to 

resolve.) Some recent studies ostensibly documenting negative results in this 

realm are discussed in chapter 13 and in the following.

Single Lineages through Time

Perhaps the most direct tests of niche conservatism available are situations in 

which models can be developed and tested “before and after” some period of 

time in which change could be manifested. Here, the same dimensions of the 

ecological niche are estimated and compared in the same region, so many of 

the caveats of other tests are avoided. The drawback, however, is that oppor-

tunities for such tests are relatively rare, so only a few such studies have been 

developed to date.

Martínez-Meyer and Peterson (2006) developed so-called longitudinal tests 

for eight plant taxa discernable at least to genus from pollen samples across 

North America. Ecological niche models were developed for the present-day 

distributions of each taxon and tested using occurrence data from within 3000 

years of the Last Glacial Maximum (21,000 years ago), and vice versa. Of the 

total of 16 reciprocal tests conducted, all models predicted the independent test-

ing data from the other time period better than would be expected at random. 

In general (see fi gure 15.3), the cross-time predictions matched distributional 

expectations quite closely, suggesting that these plant species were tracking 

a highly conserved ecological niche closely over the past 21,000 years. Other 
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such “before and after” studies include an analysis of mammal distributions in 

the present and in the Pleistocene (Martínez-Meyer et al. 2004a), and detailed 

analysis of the extinction of Woolly Mammoths (Mammuthus primigenius) 

from Europe at the end of the Pleistocene (Nogués-Bravo et al. 2008b).

A particularly intriguing study was that which failed to predict the historical 

distribution of the Spotted Hyena (Crocuta crocuta; Varela et al. 2009). In that 

analysis, the current distribution of the species was accurately predicted, im-

plying that the species is in equilibrium with its environment, and also that 

climatic variables used for modeling were adequate; however, projecting the 

niche model back to the Last Interglacial period (126,000 years ago) failed to 

predict the spatial distribution of records from across western Eurasia, where 

extensive fossil records are known for that period, suggesting that its current 

occupied distributional area represents a subset of its scenopoetic fundamental 

niche.

Nogués-Bravo (2009) reviewed published studies in which niche models 

were projected to past scenarios. An important point to make is that such tests 

of conservatism are unidirectional. In other words, one can fi nd support for 

the hypothesis of conservatism by fi nding that present and past distributions 

are environmentally coincident, but failure to demonstrate such overlap does 

not provide support for the alternative hypothesis of no conservatism. This 

asymmetric nature of the test results because several ecological and method-

ological reasons can be invoked to explain nonoverlap between realized niches 

in time (Peterson 2011).

Sister-Species Comparisons

The limitation of the longitudinal approach, of course, is that few situations lend 

themselves readily to such testing, particularly over longer periods of time, 

primarily due to the paucity of past occurrence records. As a consequence, 

Peterson et al. (1999) explored the possibility of building such tests over evo-

lutionary time, comparing the ecological niche requirements of sister-species 

pairs, in essence asking the question of whether ecological niche characteris-

tics had been conserved over a time period of twice the time since the advent 

of allopatric conditions for sets of previously contiguous conspecifi c popula-

tions. They assessed 37 sister-species pairs of birds, mammals, and butterfl ies 

that are distributed on either side of the Isthmus of Tehuantepec in southern 

Mexico—in all, 74 reciprocal comparisons, testing whether the occupied niche 

characteristics of one of the species (EO) were able to predict the geographic 

distribution (GO) of its sister-species better than random expectations. Paral-

lel analyses not of sister-species, but rather of confamilial species for each of 

the focal species, showed very low levels of predictive ability, suggesting that 
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ecological niche conservatism is strong between sister-species, but breaks down 

over longer timescales. Reanalyses of these results (Warren et al. 2008) con-

fi rmed that the niches modeled for these species pairs indeed are generally more 

similar than would be expected at random, although they are basically never 

identical.

Tracing Niche Characteristics over Phylogeny

A still more general approach to the question of ecological niche conservatism 

is to extend analysis back over phylogenies more complex than simple 2-taxon 

statements (i.e., sister-species pairs). Later, we will treat some more complex 

questions that can be addressed within this framework. However, for the mo-

ment, we focus on the question of niche conservatism, and how it can be studied 

using phylogenies.

A study that illustrates such approaches is an analysis of ecological niche 

diversity across the Icteridae (fi gure 15.4; Eaton et al. 2008)—the American 

blackbirds—a diverse clade for which detailed phylogenies are increasingly 

available (Lanyon 1994, Johnson and Lanyon 1999, Lanyon and Omland 1999, 

Omland and Lanyon 2000, Price and Lanyon 2002 and 2004). In this analysis, 

ecological niches and potential distributions (GP) were estimated for each of 

the �100 species of blackbirds, centroids of species’ niches were calculated 

and compared in environmental space, and species’ occupied and potential dis-

tributional areas were characterized in geographic space. Results showed that 

ecological niches were dramatically differentiated only between relatively dis-

tantly related species (see fi gure 15.4, second row), but that convergent evolu-

tion can make distant relatives appear rather similar in environmental space 

(see fi gure 15.4, last row). Most interesting, perhaps, is the point that very close 

relatives are invariably only slightly differentiated in ecological niche charac-

teristics. Other such studies, in which niche characteristics (expressed in binary 

format) are mapped onto phylogenetic trees, are beginning to appear in greater 

numbers (Prinzing et al. 2001, Graham et al. 2004b, Hoffmann 2005, Knouft 

et al. 2006), although these studies are divided in their conclusions regarding 

the generality of niche conservatism and must confront serious methodological 

Figure 15.3. Ecological niche models derived from relating Last Glacial Maxi-

mum (LGM) detections of pollen of eight tree species to general circulation model 

reconstructions of LGM climatic parameters. Shown are the LGM reconstructed 

distribution (potential distributional area GP; left-hand column) and the projection 

to present-day climate conditions (GP; right-hand column). Darker shading indi-

cates greater estimated suitability for the species; independent occurrence data 

for model evaluation are shown for the present-day projections. Adapted from 

Martínez-Meyer and Peterson (2006).
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2 5 0  C H A P T E R  1 5

challenges regarding how best to reconstruct ancestral character states of non-

binary ecological characteristics. Warren et al. (2008) presented novel random-

ization tools that will prove useful in such studies.

CONTEXT

The question of evolutionary conservatism  of ecological niches of species is 

in many senses independent of the conceptual framework laid out in the intro-

ductory chapters of this book. That is, our conceptual framework is described 

as two associated spaces—geographic and environmental—at a single point in 

time. A common assumption that will certainly bear closer examination is that 

among-population variation in inherited niche characteristics is negligible. This 

chapter attempts to lay out the panorama of ecological niche change through 

time, which represents yet a third dimension to the question. We now address 

how temporal change in niche dimensions occurs, how it can be studied, and 

what can be learned.

The ecological niches of greatest interest initially in this chapter are clearly 

Grinnellian in nature (see chapter 2)—that is, at a fi rst level, we are most likely 

to be intrigued by how species’ requirements in scenopoetic niche dimensions 

either change or remain static. As such, we have focused on coarse-resolution, 

largely climatic scenopoetic environmental dimensions, and have generally 

neglected the Eltonian, interactive dimensions that may depend critically on 

other species. Nonetheless, clearly, the evolution of interactions between spe-

cies is also of potentially great interest—how have the diverse interactions 

among elements of biodiversity come to be? For example, how did Mallophaga 

(feather lice) colonize bird feathers, and how did that association become so 

obligatory over time? Such questions can—in time and with thought—be ad-

dressed within these frameworks as well.

LEARNING MORE ABOUT ECOLOGICAL NICHE EVOLUTION

A recent review argued that the question of conservatism of ecological niche 

characteristics is not particularly interesting (since we know that niches evolve), 

but rather that the important and interesting questions regard how often, how 

much, and under what circumstances they evolve (Wiens and Graham 2005). 

We agree. That is not to say that niche conservatism is not important: if and 

only if ecological niches are relatively conserved in a particular lineage can 

many of the predictive approaches outlined in this book be informative. If, on 
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the other hand, the ecological niche of a species were to vary wildly through 

time and across space, then even the simple idea of predicting an occupied 

distributional area would not be likely to succeed, so the conservatism question 

is extremely relevant. As mentioned earlier, a contribution by Warren et al. 

(2008) presents a useful clarifi cation of the null hypotheses being tested in a 

diversity of studies of ecological niche conservatism versus evolution, and 

may be able to reconcile the different points of view that have been presented 

in the literature. Nonetheless, any evolved character will tend to be more simi-

lar among close relatives than among distant relatives. Wiens and colleagues 

(Wiens 2004, Wiens and Graham 2005, Kozak and Wiens 2006) have correctly 

pointed out that while “conservatism” sounds like no change, ecological niche 

conservatism can be the agent of distributional constraint and therefore isola-

tion, divergence, and even speciation.

More interesting, however, is the diversity of questions regarding evolu-

tionary biology of ecological niches that can be addressed using phylogenetic 

frameworks. Given information regarding the present-day diversity of niche 

characteristics among species in a clade, understanding the ecology of ancestral 

forms becomes feasible by means of phylogenetic methods that allow recon-

struction of ancestral character states (Cunningham et al. 1998, Martins 2000, 

Pagel et al. 2004), although these methods are not without uncertainties. In 

particular, reconstructions of continuous character states (e.g., preferences with 

respect to temperature and rainfall) have been complicated by assumptions of 

averaging of ancestral character states, and generally are quite imprecise (Gar-

land et al. 1999).

Graham et al. (2004b) applied these approaches to understanding speciation 

in dendrobatid frogs in Ecuador. They used both maximum likelihood and least-

squares approaches to estimate ancestral niche dimensions as maximum and 

minimum values for each climatic variable. The result was a detailed view of 

ecological niche (putatively EA, but probably between EA and EO) shifts be-

tween ancestors and present-day forms (fi gure 15.5), which permitted recon-

struction of ancestral distributional areas (albeit based on present-day climate 

conditions). No other studies have taken this general approach to understand-

ing ecological niche evolution, to our knowledge.

Another interesting line of inquiry is that of viewing ecological niche char-

acteristics on a phylogenetic framework to detect lineages along which ecologi-

cal niches have changed dramatically or have remained constant. An example 

is an analysis of niches across the Neotropical manakins (Pipridae) undertaken 

by estimating amounts of ecological niche change in comparison to branch 

lengths on an independent phylogenetic framework (Anciães and Peterson 2009). 

This study found that niches had been generally conservative, but identifi ed a 
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few lineages (see, e.g., Chiroxiphia boliviana in fi gure 15.6) in which niches 

have changed dramatically. Such studies have the potential to reconstruct pat-

terns of ecological innovation and to permit insight into when and under what 

circumstances ecological characteristics do change, and many more are now 

being developed and published (Martínez-Meyer et al. 2004b, Eaton et al. 2008).

The recent development of paleoclimatic reconstructions and readily avail-

able digital data layers describing environmental variables in the past opens 

doors to new understandings of the geography of speciation and the paleoge-

ography of species. In particular, once ecological niche conservatism has been 

tested and established in a particular lineage over a particular span of time, it 

becomes possible to reconstruct past potential distributional patterns, such as 

Pleistocene refugia or dispersal corridors (Waltari et al. 2007). For example, 

Figure 15.6. Analysis of niche characteristics across the Neotropical manakins 

(Pipridae), depicted as branch lengths summarizing amounts of ecological niche 

change on an independent phylogenetic framework. Adapted from Anciães and 

Peterson (2009).

Figure 15.5. Example analysis of geographic and environmental distributions of 

species at present and in the past. From Graham et al. (2004b), this fi gure shows 

analyses of the dendrobatid frog lineage that includes Epipedobates boulengeri, 
E. sp., E. tricolor, Colostethus machalilla, and E. anthonyi. The left-hand panel 

shows the modeled potential distributional area GP for E. boulengeri and for the 

ancestor of E. anthonyi, C. machalilla, E. tricolor, and E. sp., where gray shows 

the distribution of E. boulengeri and black shows the ancestor. (Areas with diago-

nal shading are areas of overlap between past and present potential distributional 

areas.) The right-hand panel shows the distribution of E. boulengeri and the ances-

tral taxon in a principal components manipulated E-space.
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Peterson and Nyári (2007) used ecological niche models projected onto cli-

matic information from the Last Glacial Maximum to reconstruct putative Pleis-

tocene refugia for the Thrush-like Mourner (Schiffornis turdina) across the 

Neotropics. They tested the degree to which these patterns of connectivity and 

isolation correspond to present-day genetic differentiation and found a close 

correspondence—in other words, Pleistocene connectivity estimated using eco-

logical niche modeling techniques proved very informative regarding present-

day genetic breaks in this highly structured species. These hypotheses, which 

are independent of the usual suites of molecular data that have traditionally 

been applied to such questions (i.e., the fi eld of phylogeography), can in turn 

be used as hypotheses to be tested with those other datasets (Carstens and 

Richards 2007, Knowles et al. 2007, Strasburg et al. 2007, Jakob et al. 2009).

In the last few years, paleodistributions generated with niche modeling tech-

niques have been combined with phylogeographic methods to test hypotheses 

regarding patterns of population-genetic structure of different taxa (Carstens 

and Richards 2007, Knowles et al. 2007). In this new approach, niche models 

based on current distribution data are “hindcasted” to identify potential refu-

gia and likely routes of dispersal, which are then contrasted with population- 

genetic signals of demographic processes (e.g., bottleneck effects; Jakob et al. 

2007, Buckley et al. 2010). Combination of these two independent lines of 

evidence has resulted useful to understanding the roles of geography and eco-

logical constraints on species in responses to climate change (Cordellier and 

Pfenninger 2009). Although only in initial stages, this fusion of fi elds promises 

fruitful future insights (Hickerson et al. 2010).

FUTURE DIRECTIONS AND CHALLENGES

This realm of applications of ecological niche modeling is only beginning to 

open and be explored rigorously. Several important questions remain for analy-

sis. A potentially fruitful realm concerns the question of how ecological niches 

interact with processes of evolution, geography, and environmental history to 

produce biological diversifi cation, including how the available environmental 

space itself may change through time. An important area of inquiry not yet 

explored in detail is how dynamic ecological landscapes (i.e., changing avail-

able environmental spaces) may constrain the geographic and evolutionary pos-

sibilities of species (Jackson and Overpeck 2000). These questions would cer-

tainly rank among some of the most fundamental and fascinating in systematics 

and evolutionary biology, so exciting insights lie ahead.

short
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A second suite of “next steps” looks back to the question of ecological niche 

conservatism . Here, as we have reviewed earlier, a growing mass of evidence 

points to the generality of conservatism of ecological traits over short-to- 

moderate periods of evolutionary time (e.g., Peterson et al. 1999), particularly 

in the context of species’ invasions (Peterson 2003a). We point to exceptions 

to the conservatism “norm” as being some of the most intriguing and exciting 

situations encountered, and consider that more research is required to assert the 

generality of these results, and most interestingly, to explore under what cir-

cumstances ecological niche change does occur.

Finally, we offer the contrast between Grinnellian and Eltonian niches as an 

additional fertile fi eld of exploration. Do scenopoetic dimensions of species’ 

ecological niches show greater evolutionary conservatism than linked, inter-

active dimensions? The existence of many long-term ecological associations 

that show impressive constancy over evolutionary time periods (DiMichele et 

al. 2004, McGill et al. 2005), coupled with growing evidence about the fast 

pace of local adaptations in Eltonian variables (Thompson 2005), makes these 

questions relevant and interesting.
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Conclusions

This book is the result of years of discussion, debate, and exploration among 

seven authors, each of whom has had a distinct trajectory of research efforts 

that have led to an interest in species’ niches and distributions. As a conse-

quence, this book represents a consensus, and sometimes détente, of diverse 

viewpoints and approaches. What we hope we have achieved, nonetheless, is a 

step toward a comprehensive framework for thinking about the geography and 

ecology of where species are and are not distributed.

Our central idea in this book, particularly looking back over the years of 

discussion and development that it has required of us, is that a fi rm conceptual 

framework is critical to further progress in this fi eld. Indeed, in some senses, 

we believe that an appropriate conceptual framework will prove more impor-

tant than choosing the best and most accurate modeling algorithms—rather, we 

suspect that more inaccuracy is introduced into results from incorrect assump-

tions and nonrepresentative samples. We hope that this book offers a synthesis 

that provides a fi rm conceptual foundation for varied work in the fi eld of niches 

and distributions.

A source of consternation to some to whom we have presented these ideas 

is our rather radical reworking of traditional concepts in ecology. In reality, we 

attempted whenever possible not to abandon the classical framework of the 

ideas of Hutchinson and MacArthur, but several key points were not treated 

suffi ciently by them. In those cases, it has been necessary to revisit concepts, 

rework nomenclature, and add concepts to clarify. We suspect that the added 

detail that we have perceived is perceptible chiefl y because new data and soft-

ware tools exist that the previous generations of ecologists and biogeographers 

did not have available. Regardless, we have attempted to link our new concepts 

to the preceding suite of concepts, such that the lineage of thinking and discus-

sion is not lost.

Clearly, however, much more work is needed in this fi eld. The preceding 

pages that constitute this book are replete with unfi nished thinking, incomplete 

development, and challenges for future work. Such is, we believe, the situation 

when a fi eld of great promise is nonetheless only a decade or two old. Major 
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challenges that we perceive include (1) full integration of the BAM framework 

with central concepts of population biology and statistical theory; (2) greater 

methodological clarity regarding model evaluation in relation to the specifi c 

quantitites (niches and distributions) being estimated; (3) better clarity in think-

ing regarding niche conservatism versus evolution as regards scenopoetic versus 

bionomic environmental dimensions; and (4) much-improved linkage between 

correlational and mechanistic approaches to estimating and understanding 

ecological niches. Each of these realms represents a major suite of challenges 

that requires integration of careful conceptual thinking with detailed empirical 

exploration—we hope that this book will open doors to such concrete advances.

More generally, we perceive that the syntheses that we present in this book 

had not been achieved previously owing to the tendency toward reductionism 

in organismal biology. Ecologists, biogeographers, and evolutionary biologists 

were not “talking to” one another suffi ciently in recent decades, and as a con-

sequence did not explore these areas of overlapping interest in suffi cient detail. 

Ecological niche modeling offers an exciting suite of novel tools that have 

already proven to be of interest across disciplines—the further growth and mat-

uration of this fi eld will require conceptual linkages that can come only from 

integrated thinking across scales ranging from the ecological to the biogeo-

graphic. Such advances will, we hope, be increasingly feasible as a common 

language and conceptual framework are presented (as we have attempted to 

do) and adopted as a platform for cross-disciplinary discussions, debates, and 

syntheses.
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Glossary of Symbols Used

This section summarizes the mathematical notation used throughout this book.

|A| The cardinality of set A.

AC The complement of set A.

Â An estimate of a set A.

f̂  An estimate of a function f.
Ŷ An estimate or prediction of a variable Y.

E{X} Expected value of random variable X.

P(A) Probability of event A.

P(A|B) Conditional probability of event A given B.

The following table summarizes specifi c symbols used to express concepts in 

this book.

a, b, c, d Entries of confusion matrix.

ai,l Per-unit time probability of fi nding resource l.
A Set of cells in geographic space where intrinsic growth 

rates are positive (abiotically suitable).

b(g) Probability of a collector visiting cell g, or sampling 

bias if heterogeneous.

bi,g 
Bionomic parameter.

B Number of bootstrap samples in bootstrapping scheme.

B Set of cells in G where biotic conditions are favorable 

for presence of a species.

ĉ(X) A continuous output estimate of function f based on the 

result of an algorithm μ(G
data

, E).

ci,g Mean fi eld biotic interaction parameter

d Number of excluded (deleted) datapoints in jackknife 

scheme.

D Binary random variable to denote detection of species 

by collector.

D(g) Conditional probability of detection of species by 

collector.
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di(e
→

g) Environmentally determined death rate of species i at 

environment e→g.

e→g � (e
1
, e

2
, . . . , ev)g Vector of ν environmental variables at cell g. A generic 

element of E.

E-space Multidimensional space of scenopoetic variables. 

Mathematically, it is E.

E Environmental space of scenopoetic environmental 

variables. Colloquially, it is referred to as “E-space.”

E′ A generic subset of E obtained from the mapping 

function η.

EA Scenopoetic existing fundamental niche, defi ned by 

η(GA).

EI Invadable niche space, defi ned by η(GI).

EO Occupied niche space, defi ned by η(GO).

EP Biotically reduced niche, defi ned by η(GP).

E
val

 An estimate of expected loss, or average validation 

error, prediction error, or testing error.

E
ver

 An estimate of verifi cation error, or calibration error, or 

training error.

EK
val

 An estimate of expected loss, using K-fold cross 

validation.

E
val
boot An estimate of expected loss, using bootstrap samples.

η Function that maps geography into environment.

η(A) For A ⊆ G, the direct image of set A, or the set 

{η(g)|g ∈ A}.

η–1(A) For A ⊆ E, the inverse image of set A, or the set 

{g ∈ G|η(g) ∈ A}.

f(X,Z) Nature’s response mechanism relating variables X, Y to 

response Y.

f(X) Idealized approximation of nature’s response mecha-

nism relating variable X to response Y, disregarding 

effects of Z.

f̂ (X) A binary estimate of function f based on the result of an 

algorithm μ(G
data

, E).

f̂u Threshold-dependent binary model obtained by 

thresholding at value u.

f̂
–i Model calibrated by setting aside ith observation.

f̂ *i(X) Bootstrap replicates of fi tted models.

g A generic element of G (i.e., a single grid cell).

G-space A set area of geography. Mathematically, it is G.
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G L O S S A RY  O F  S Y M B O L S  U S E D  2 6 3

G Geographic space composed of cells or pixels, gener-

ally two-dimensional. Colloquially, it is “G-space.”

G′ A generic spatial subset of space G.

GA The abiotically suitable area, defi ned by η–1(EA).

GB Biotically suitable area; generally referred to simply 

as B.

GM Accessible area, based on the species’ present and his-

torical movements; generally referred to simply as M.

GI The invadable distributional area, defi ned as 

A ∩ B ∩ MC.

GO The occupied distributional area, defi ned as 

A ∩ B ∩ M.

GP The potential distributional area, defi ned as GO ∪ GI.

G
data

 Data; set of observations (presences, and, if existing, 

true absences).

G� Occurrence data documenting presences of species.

ΔGO Change in occupied distributional area before and after 

some change event.

h Number of cells that compose G, or |G|.
I Binary random variable to denote species’ access to a 

site.

J Binary random variable to denote abiotic suitability.

K Binary random variable to denote biotic suitability.

K Number of equal-sized pools for K-fold 

cross-validation.

k Number of subsets in data-splitting scheme.

k Negative binomial parameter in abundance estimation.

k(i) Index notation for K-fold validation.

L(Y, Ŷ) Loss function for quantifying error committed when 

predicting Y with an estimate Ŷ.

m Number of data points used for validating model.

M Movement set of geographic cells that have been 

accessible to species within a given time span.

μ(G
data

, E) Result of applying an algorithm to data given an 

environmental space E to estimate subsets of G.

n Number of data points used for calibrating a model.

N̂ Estimate of total number of individuals.

N Available niche space, or η(G) ⊆ E (used in appendix 

B only).

NF Scenopoetic fundamental niche.
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N̂ Niche estimated by whatever method.

O Binary random variable to denote observation of 

species by collector.

p Number of spatially structured partitions.

PA(g) Conditional probability of abiotic suitability at site g.

PB(g) Conditional probability of biotic suitability at site g.

PM(g) Conditional probability of species’ access at site g.

PAB(g) Product of PA(g) and PB(g).

PBAM(g) Product of PA(g), PM(g), and PB(g).

φi,g(e
→

i,g,  R
→

i,g;  x→g) Regulation term in phenomenological equations.

ψ(Mi; x
→

i) Movement function in phenomenological equations.

q Weight in loss function for omission-commission.

r Generic growth rate of a species.

r̄ Long-run growth rate of a species.

rg Intrinsic growth rate of a generic species in cell g.

ri,g(e
→
g,  R

→

i,g) Intrinsic growth rate of species i in cell g as a function 

of the scenopoetic variables (e→g) and the relevant 

resource-consumer parameters (R
→

i,g).

R
→

i,g Equation parameters related to interactions with other 

species.

Rl
* Level of resource l at equilibrium.

s The number of interacting species that inhabit G.

S An arbitrary species, as in Hutchinson (1957).

t Generic time.

Ti Transition matrix expressing instantaneous probabilities 

of intercell movements for species i.
u Threshold of occurrence used for converting continuous 

or ordinal output to binary output.

v Number of environmental variables defi ned over G, or 

the number of dimensions of the niche hypervolume.

Vi Span of i-th environmental variable (used only in 

appendix B).

w Fitness.

wi,l Conversion parameters to transform resource-encounter 

rates to units of population growth rate.

x Longitude.

xg Density of a generic species in cell g.

xi,g Density of species i in cell g.

x→i Vector of population densities of all i species in every 

cell at a given time.
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X Variable to denote random visit by observer to a site.

Xi Observed values of environmental variables interpreted 

as values of e→g.

Xi
* Observed values of environmental variables different 

from observations used for calibrating a model.

X Generic observable explanatory variables.

y Latitude.

Y Generic response variable issued by nature.

Yg Specifi c response variable issued by nature at location g.

Ŷi Predicted values of Yi for observed data, equivalent to 

f̂ (Xi).

Ŷi
* Predicted values of Yi for additional data for model 

evaluation, equivalent to f̂ (Xi
*).

Z Generic nonobservable explanatory variables.
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Set Theory for G- and E-Space

In this appendix, we present some set theoretical operations that are mathemat-

ically valid for subsets of G-space and E-space.

1. E � V
1
 � V

2
 � . . . Vν, the environmental space, is the Cartesian product 

of all the sets of possible values of the m environmental variables.

2. G is the set of all cells (defi ned by their coordinates) existing in the 

selected region of the world.

3. The set η(G) � N ⊆ E is the available niche space, i.e., the subset of E 

that actually exists in the region of the world under consideration (Jackson 

and Overpeck 2000).

4. The difference between the sets A and B is defi ned as A – B � A ∩ BC

The following is a table of valid operations in E-space.

η(G
1
 ∪ G

2
) � η(G

1
) ∪ η(G

2
) The environment of a union of areas is the 

union of the environments of each separate 

area.

η(G
1
 ∩ G

2
) ⊆ η(G

1
) ∩ η(G

2
) The environment of an intersection of areas 

is contained in the intersection of the 

environments of the separate areas.

η(G
1
 – G

2
) ⊇ η(G

1
) – η(G

2
) �  The environment of the difference of two

 η(G
1
) ∩ η(G

2
)C areas is contained in the intersection of the 

environment of the fi rst with the comple-

ment of the environment of the second.

η(G
1
C) ⊇ N – η(G

1
) �  The environment of the complement of an

 N ∩ η(G
1
)C area is contained in the intersection of the 

niche space with the complement of the 

environment of the area.

G
1
 ⊆ G

2
 ⇒ η(G

1
) ⊆ η(G

2
) If an area is contained in another, its 

environment is contained in the environ-

ment of the other.
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If no repeated elements are present in E, then the preceding symbols for con-

taining become equalities.

The following is a table of valid G-space operations.

η–1(N) � G The area corresponding to the entire 

niche space is the region in 

consideration.

η–1(E
1
 ∪ E

2
) � η–1(E

1
) ∪ η–1(E

2
) The area corresponding to the union of 

two environmental sets is equal to the 

union of the areas of the two environ-

mental sets, taken separately.

η–1(E
1
 ∩ E

2
) � η–1(E

1
) ∩ η–1(E

2
) The area corresponding to the intersec-

tion of two environmental sets equals 

the intersection of the areas of the two 

environmental sets, taken separately.

η–1(N – E
1
) � G – η–1(E

1
) The area corresponding to the comple-

ment (with respect to the available niche 

space) equals the geographic region 

minus the area corresponding to the 

environmental subset in question.

These operations are mathematically valid. However, their biological interpre-

tation contains several subtleties, as will be discussed in the corresponding 

chapters. In addition, we stress that in general although both the operations for 

obtaining the environments of sets of geographic cells η(G′) � E′ and the 
geographic cells corresponding to sets of environmental vectors η–1(E′) � G″ 

can be implemented in a GIS, and they are in a sense inverse operations, one 

cannot simply assume that η–1[η(G′)] � η–1(E′) � G′. For this equality to be 

valid, a one-to-one correspondence must exist between environment vectors 

and geographic cells. If different geographic cells present the same environ-

mental conditions, then the equality may not be valid.
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Glossary

A

Abiotic niche — The set of environments in which abiotic conditions are favorable for 

the species. In practice, largely equivalent to the scenopoetic niche. Contrast with 

biotically reduced niche.

Abiotically suitable area — The geographic region where, in the absence of competitors 

and other negatively interacting species, and given unlimited dispersal abilities, the 

abiotic environment is favorable for the species. Contrast with occupied distribu-
tional area and potential distributional area.

Absence data (see also presence/absence data) — Datasets containing “records” of places 

where sampling has occurred but the species has not been documented. Contrast with 

presence-only data.

Algorithm — A specifi c sequence of instructions for solving a problem or developing a 

task. Examples of algorithms used to model species niches and distributions include 

BIOCLIM, desktop GARP, Maxent, and so on. Contrast with model.
Ancillary data — As used here, additional factors not included in the modeling algo-

rithms and that infl uence distributions of species beyond the simple effects of sceno-
poetic variables and bionomic variables. Examples include geographic barriers and 

historical events. Ancillary data normally are used for postprocessing results of an 

algorithm. See abiotically suitable area and occupied distributional area; contrast 

with metadata.

Apparent commission error — A kind of commission error that is not real, but rather 

derives from misinformative evaluation data (see also absence data), inappropriate 

selection of the study region for evaluation, or both. See nonequilibrium distributions.

Area under the curve (� AUC) — A statistic generated from a receiver operating char-
acteristic plot (ROC), the area under the curve (AUC) represents an overall measure 

of model performance across all thresholds and strengths of a prediction. AUC is a 

nonparametric measure that ranges 0 –1 and summarizes the model’s ability to rank 

presence records higher than absence records (or higher than a sample from the back-

ground, in the case of presence–background data); it does not evaluate the model’s 

goodness-of-fi t. See model evaluation.

Artifactual absence — A situation when a species is not truly absent, but rather the lack 

of a record is an artifact of inadequate or nonexistent sampling. See absence data.

Asymmetric loss — A loss function that combines the omission error and commission 
error, but not with equal weight. Contrast with symmetric loss.

AUC — See area under the curve.
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B

Background data — Information on environmental variation across the study area (the 

“background”), whether or not sampling has occurred or whether or not the species 

of interest has been found there. See also presence/pseudoabsence data.

BAM diagram — A Venn diagram that displays the joint fulfi llment in geographic space 

(G-space) of three sets of conditions that together determine a species’ distribution: 

B, for biotic conditions; A, for abiotic conditions; and M, for movement of the species.

Bias — See sampling bias.

Binomial test — A test employed when each independent result is one of two possible 

outcomes. In the current context, it is often applied to determine whether evaluation 
data fall into regions of a binary geographic prediction (usually after applying a 

threshold to a continuous or an ordinal output) more often than expected by chance, 

constituting a one-tailed test of model signifi cance. See model evaluation.

Biogeographic regions — Portions of G-space delimited by patterns of spatial coinci-

dence in the ranges (occupied distributional area) of large numbers of species. Bio-

geographic regions are usually related to current and/or past dispersal limitations, and 

to some degree environmental characteristics. Note that this concept differs markedly 

from that of a biome, which depends almost entirely on environmental characteristics 

and does not directly include contingent effects of history.

Bionomic variables — Variables that are dynamically linked to the occurrence of a spe-

cies, such as competitors, prey, predators. Contrast with scenopoetic variables, notic-

ing that the distinction is not absolute.

Biotic interactions — Interactions between and among species—for example, competi-

tion, mutualism, predation. See BAM diagram.

Biotically reduced niche — The set of environments in which the abiotic environment is 

favorable for the species and in which negative interactors are not capable of exclud-

ing the populations of the species of interest. See potential distributional area; con-

trast with scenopoetic niche.

Biotope — Equivalent to G-space, defi ned here as the geographic space composed of 

cells or pixels covering a particular region. See extent, grain, and study region.

C

Calibration — See model calibration.

Calibration data — The primary occurrence data used to calibrate the model. See model 
calibration; contrast with evaluation data.

Commission error — A measure of model performance based on the confusion matrix. As 

a rate that ranges from 0 to 1, it indicates the proportion of negative evaluation data 

(localities of known or assumed absence for the species; see absence data) that fall in 

pixels of predicted presence for the species (typically after applying a threshold to a 

continuous or an ordinal prediction); it is equivalent to the false positive rate and equals 

1 minus specifi city. See apparent commission error; contrast with omission error.

Confusion matrix — A matrix relating rows summarizing predicted presence and ab-

sence of a species (via a binary prediction) to columns indicating the true (or assumed) 

status (from occurrence records of the species, as well as absence, pseudoabsence, or 
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background data). The four cells of the matrix thus indicate distinct combinations of 

prediction versus reality and are commonly used to calculate the omission error rate 

and commission error rate (including both true and apparent commission error).

D

Data partitioning — See data splitting.

Data splitting — A partitioning of occurrence data (typically in some random manner). 

Can be used to refer to splits internal to model calibration; however, some authors 

use it to refer to random division of primary occurrence data into calibration data 

and evaluation data.

Detectability — A measure of the degree to which members of the species are apparent 

to observers using a given set of techniques, quantifi ed as a random reduction in de-

tection probability from unity to something below that in any site across the occupied 
distributional area. (Note, however, possible heterogeneities in detectability across 

geography.)

Direct image — The result of applying a function to a set of elements in its domain; 

herein, the function η maps cells in geographic space to their corresponding environ-

ments. If G′ is a set of cells in geographic space, its direct image E′ � η(G′) is the 

corresponding set of environments occurring in G′.
Direct variables — Variables that affect organisms physiologically but that are not con-

sumed by them; equivalent to Hutchinson’s scenopoetic variables (note, not synony-

mous with proximal variables).

Dispersal limitation — A factor that impedes dispersal (movement) by individuals of a 

species. See BAM diagram.

Distal variables — Variables to which an organism responds only via multiple causal 

links (not synonymous with indirect variables).

Distributional area — A portion of G-space, typically that inhabited by the species. See 

other important distributional areas, such as the abiotically suitable area or potential 
distributional area and occupied distributional area.

Distributional equilibrium — The situation in which a species inhabits the full spatial 

extent of its abiotically suitable area. See BAM diagram; contrast with nonequilib-
rium distribution.

E

E-space (� environmental space) — A multidimensional space E of scenopoetic vari-
ables. See environmental data; contrast with G-space.

Ecological niche modeling — Estimation of the different niches (fundamental, existing, 

potential, occupied), particularly those defi ned using scenopoetic conditions. In prac-

tice, carried out via estimation of abiotically suitable conditions from observations of 

the presence of a species; such models can be used to estimate different distributional 

areas (the abiotically suitable area, potential distributional area, and occupied distri-
butional area) by stating assumptions about factors in B and M, the latter area being 

the goal of species distribution modeling. See BAM diagram, E-space, and G-space.
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Eltonian niche (� functional niche) — A niche concept oriented toward community-

ecology questions, defi ned at small spatial extents at which experimental manipula-

tions are feasible, emphasizing the functional role of species in communities, and 

including models of resource consumption and impacts. Contrast with Grinnellian 
niche.

Eltonian Noise Hypothesis — The hypothesis that A ≈ B (see BAM diagram)—that is, 

that the cells of G-space that are abiotically suitable for a species generally are bioti-

cally suitable as well. This hypothesis is not true when important biotic interactions 

(e.g., competition, predation, mutalism) are spatially distributed in large, homoge-

neous regions across areas that are abiotically suitable for the species.

Ensemble prediction — A consensus prediction of a niche or a distributional area made 

by combining results of different methods, alternative parameterizations of the same 

method, or multiple iterations of stochastic methods, to generate a composite value 

of suitability.

Environmental data — Values for environmental variables (generally scenopoetic vari-
ables) used in ecological niche modeling. Typically, these variables must be a coinci-

dent raster grid for the study region employed in model calibration. See E-space.

Environmental envelope — Simple methods for ecological niche modeling by identify-

ing shapes in multidimensional E-space that enclose environments associated with 

known presence data (e.g., BIOCLIM). Note, however, that this term has been applied 

to other, more complex, techniques in some literature.

Environmental niche (see also Grinnellian niche) — A term used in some literature to 

refer essentially to what we call Grinnellian niches—that is, niches based on a space 

of mostly abiotic, nonlinked variables.

Environmental space — See E-space.

Evaluation — See model evaluation.

Evaluation data (see also model evaluation) — Occurrence data used to evaluate model 
performance and/or model signifi cance. Evaluation data can be presence-only data, 

as well as often presence/absence data, presence/background data, or presence/
pseudoabsence data. Contrast with calibration data.

Existing environmental space — The E-space that is represented across the study region 
at the time in question.

Expected loss — The average loss function over typical values of evaluation data; for 

example, under zero-one loss, the expected loss is simply the probability that predic-

tion and observation disagree. See asymmetric loss and symmetric loss.

Extent (� spatial extent) — The size and placement of the study region in geographic 

space (G-space). See scale; contrast with grain.

Extrapolation — Prediction into environmental values beyond the range (in E-space) of 

the area on which the model was calibrated (common when a model is applied to 

cross-time or cross-space; see also the related but distinct concept of transferability). 

Contrast with interpolation.

F

False negative rate (� omission error rate) — The rate at which a model incorrectly 

predicts absence—that is, the proportion of data for the species falling outside the 
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area predicted present for the species; ranges from 0 to 1 and equals 1 minus sensitiv-
ity. Contrast with false positive rate.

False positive rate (� commission error rate) — The rate at which a model incorrectly 

predicts presence—that is, the proportion of absence data for the species falling in 

areas predicted present for the species; ranges from 0 to 1 and equals 1 – specifi city. 

Contrast with false negative rate.

Functional niche — The meaning of niche associated with the Eltonian interpretation, 

stressing the impact (as opposed to the requirements) of a species on its habitat, re-

sources, and interacting species, mostly at local scales. See Eltonian niche.

Fundamental niche — The set of all environmental states that permit a species to exist. 

Contrast with realized niche. Herein, we distinguish Eltonian fundamental niches 

from Grinnellian fundamental niches. The latter is the set of scenopoetic (noninter-

acting and nonlinked) conditions that the species can tolerate. The former is defi ned 

by Chase and Leibold (2003) in terms of interacting variables.

G

G-space — A set area of geography (G). See study region; contrast with E-space.

Geographic distribution — See occupied distributional area.

Geographic niche — See Grinnellian niche.

Geographic space — See G-space.

Georeferencing — Here, coordinates of latitude and longitude (or another system) indi-

cating the position of a point in space. High-quality georeferenced primary occur-
rence data also should include an estimate of uncertainty, as well as metadata docu-

menting the record and the source/method of georeferencing.

Goodness-of-fi t — A parametric test evaluating model performance and sometimes also 

model signifi cance via an assessment of how well model output matches the likeli-

hood of the species’ presence, via calculation of a Pearson product-moment correla-

tion between the model prediction and evaluation data, typically with presence/ab-
sence data (but sometimes presence/background data or presence/pseudoabsence 
data). Contrast with area under the curve.

Grain (� resolution, � spatial resolution) — The size of the cells, sometimes called 

pixels, of the raster grid in the study region in geographic space (G-space). See scale; 

contrast with extent.
Grinnellian niche — Niche concepts defi ned on the basis of environmental space of 

scenopoetic (noninteracting and nonlinked) environmental variables and focused on 

geographic scales and requirements. Contrast with Eltonian niche.

H

Hutchinsonian Duality — The linked nature of the niche and distribution in E-space and 

G-space.
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I

Idealized variables — A category of environmental variables focusing on the degree to 

which they have direct physiological effects on organisms.

Impacts — One of the two basic elements in niche defi nitions, impacts are the effects of 

a species on the elements of its environment (e.g., resources, habitat structure, popu-

lation densities of interactors). See Eltonian niche; contrast with requirements.

Indirect variables — Variables with no causal physiological effects on individuals but 

that have a correlation with species’ occurrences because of correlations with other 

factors. Contrast with direct variables.

Interpolation — Prediction between known values of an independent variable. Herein, 

for example, between environmental values within the range (in E-space) of occur-
rence data with which the model was calibrated. See also spatial interpolation; con-

trast with extrapolation.

Invadable distributional area — The additional area that a species could occupy if pres-

ent distributional constraints were to be overcome. See BAM diagram; contrast with 

occupied distributional area and potential distributional area.

Invadable niche space — The subset of E-space corresponding to the elements of G-space 

that the species could occupy if distributional constraints were to be overcome. See 

invadable distributional area.

J

Jackknife — A statistical approach employing repeated rounds of subsampling from a 

dataset with systematic deletion of a set number of observations. In ecological niche 
modeling, it has been applied to primary occurrence data (when few records are avail-

able) and to environmental data (to determine the contribution of various variables). 

A general formula for jackknifes is n – d, where n is the overall number of elements 

available, and d is the number deleted in each iteration. To date, n – 1 jackknives have 

been most common.

K

K-fold cross-validation — An approach to data splitting in which primary occurrence 
data are split into k roughly equal-sized subsets (k � 2), and each subset is held out 

successively (for model evaluation) while the other k – 1 parts are used for model 
calibration. Note that this approach does not fulfi ll the conditions of true model 
validation.

L

Loss function — An evaluation criterion for quantifying error (discrepancy between pre-

diction and observation); no loss is incurred in cases in which prediction and observa-

tion agree. See also uncertainty.
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M

Metadata — As used here, additional data describing details of the format and source of 

data—for example, for primary occurrence data and environmental data. Contrast 

with ancillary data.

Misclassifi cation rate — A measure of model performance derived from the confusion 
matrix that combines omission error and commission error into a single index.

Model — A simplifi ed representation of some aspects of nature for the purpose of re-

search. Contrast with algorithm.

Model calibration (� calibration, � training) — The step or steps involved in forming 

a model, here one that estimates a species’ niche based on primary occurrence data 

and values of environmental variables.

Model evaluation (� evaluation, � testing) — Refers collectively to the diversity of test-

ing situations: use of evaluation data that are not independent of the calibration data 

(see model verifi cation), semi-independent, or fully independent (see model valida-
tion). Such evaluation quantifi es how successful the model is in predicting observa-

tions used for evaluation.

Model performance (� performance) — Characterization of how well or poorly a model 

achieves a particular goal related to prediction, including quantifi cations of omission 
error and/or commission error, but not necessarily including statistical assessment of 

model signifi cance. Measures of model performance may be threshold-dependent or 

threshold-independent, and either parametric (e.g., for goodness-of-fi t) or nonpara-

metric (e.g., ranking in the area under the curve).

Model prediction — The output of ecological niche modeling, generally depicted in G-
space, and often after processing—for example, after applying a threshold to convert 

a continuous or an ordinal prediction to a binary one.

Model signifi cance (� signifi cance, � statistical signifi cance) — Determination via sta-

tistical tests whether predictions of evaluation data differ from a random null hypoth-

esis with a particular level of probabilistic confi dence. Often based on some measure 

of model performance, tests of model signifi cance typically assess whether the model 

predicts evaluation data better than random expectations (one-tailed hypothesis).

Model testing — See testing and model evaluation.

Model training — See training and model calibration.

Model validation (� validation) — A term referring to one kind of model evaluation, 

specifi cally with evaluation data that are fully independent of the calibration data. 

Contrast with model verifi cation.

Model verifi cation (� verifi cation) — A term referring to one kind of model evaluation, 

specifi cally with evaluation data that are not independent of the calibration data. 

Contrast with model validation.

Modeling algorithm — See algorithm.

Modifi able Areal Unit Problem — The dilemma that changing the grain (� spatial 
resolution) and/or the location of a raster grid can lead to different values of spatial 

statistics—for example, changing the grid may lead to different estimates of the 

niche of a species.
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N

Niche concept — One of several related and often confused concepts used to address the 

environmental requirements (biotic and abiotic) that need to be fulfi lled for a popula-

tion to survive, together with the impacts the population has on these environmental 

factors. Different schools place the emphasis on different aspects of the preceding 

idea, leading to a variety of defi nitions and concepts. See Eltonian niche and Grinnel-
lian niche.

Niche conservatism — The propensity of species to maintain inherited niche character-

istics over evolutionary time, e.g., with closely related species showing similar niches. 

See also niche identity and niche similarity; contrast with niche evolution.

Niche evolution — The process of evolutionary change (by adaptation or other processes) 

in the inherited niche characteristics of a species over time. Contrast with niche 
conservatism.

Niche identity — One of two null hypotheses regarding niche conservatism versus evo-

lution in which the idea is tested that two niches are identical (Warren et al. 2008). 

Contrast with niche similarity.

Niche similarity — The other of two null hypotheses regarding niche conservatism ver-

sus evolution in which the idea is tested that two niches are more similar to one 

 another than would be expected at random (Warren et al. 2008). Contrast with niche 
identity.

Nonequilibrium distribution — The pattern present when a species inhabits less than its 

full abiotically suitable area, owing to dispersal limitations and/or biotic interactions.

O

Observational data — See primary occurrence data.

Occupied distributional area (� geographic distribution, � range) — The subset of 

regions accessible to a species in which both abiotic and biotic conditions are favor-

able for it to maintain populations, and to which it has been able to disperse.

Occupied niche space — The subset of E-space that the species inhabits; it is equivalent 

to the set of environments in the occupied distributional area.

Occurrence data — See primary occurrence data.

Omission error — A measure of model of performance. As a rate, the proportion of 

grid cells of known occurrence of the species that are predicted absent by the model. 

Typically calculated based on evaluation data, but also may be relevant for calibra-
tion data.

Overfi tting — The situation when model complexity becomes excessive and a model 

shows close fi t to calibration data but is less able to predict independent or even 

semi-independent evaluation data. Note that overfi tting can be to noise and/or to 

sampling bias.

Overprediction — Predicting too broad an area in G-space for a species. See commis-
sion error, but note the difference between real and apparent commission error.
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P

Performance — See model performance.

Postprocessing — The step or steps involved in taking into account factors that cause 

nonequilibrium distributions. Specifi cally, ecological niche modeling results initially 

representing species’ abiotically suitable areas can be processed post hoc, leading to 

closer approximations of the species’ occupied distributional area. See ancillary data.

Potential distributional area — The union of the occupied distributional area and in-
vadable distributional area for a species—that is, the regions where the abiotic and 

biotic conditions are suitable. (Note, however, that much literature uses potential distri-

bution in a different way, as a synonym of what we term the abiotically suitable area.) 

See biotically reduced niche.

Potential geographic distribution — See potential distributional area.

Potential niche — The intersection of a fundamental scenopoetic niche with the set of 

environments actually existing at a given time. The name was proposed by Jackson 

and Overpeck (2000); since it is confusing, we use scenopoetic existing fundamental 
niche as a more effective synonym.

Presence data — See presence-only data.

Presence/absence data (see also absence data) — Datasets containing records of where a 

species has been observed to be present, as well as sites where it is absent, or assumed 

to be, despite sampling efforts (but note that the species may actually inhabit these 

latter sites, if sampling is present but inadequate). Contrast with presence/background 
data, presence-only data, and presence/pseudoabsence data.

Presence/background data — Datasets containing records of where a species has been 

observed to be present, as well as information regarding environmental variation 

across the study area (the “background”), whether or not sampling has occurred there 

(and if so, whether or not records of the species exist from those regions). Contrast 

with presence/absence data, presence-only data, and presence/pseudoabsence data.

Presence-only data — Datasets containing records of where a species has been observed 

to be present, but lacking any information regarding sites where it is absent. Contrast 

with presence/absence data, presence/background data, and presence/pseudoabsence 
data.

Presence/pseudoabsence data — Datasets containing records of where a species has 

been observed to be present, as well as sites where it has not been observed (but note 

that the species may actually inhabit these latter sites, which can lack records of it 

due to nonexistent or inadequate sampling). Contrast with presence/absence data, 

presence/background data, and presence-only data.

Primary biodiversity data — See primary occurrence data.

Primary occurrence data (� occurrence data) — Records of species’ presence (and 

sometimes absence), especially voucher specimens in natural history museums and 

herbaria, but also including observational records from visual observations and audi-

tory records (e.g., of birds amphibians, bats). Contrast with secondary data.

Proximal variables — Variables to which organisms respond directly (note, not synony-

mous with direct variables).

Pseudoabsence data — See presence/pseudoabsence data.
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R

Range — See occupied distributional area.

Realized niche — The set of all environmental states that would permit a species to exist 

in the presence of competitors or other negatively interacting species and restrictive 

factors. Contrast with fundamental niche.

Receiver operating characteristic plot (� ROC) — A plot of two measures derived from 

the confusion matrix: sensitivity and specifi city—sensitivity on the y axis versus 1 – 

specifi city on the x axis. The area under the curve (AUC) of the ROC plot is com-

monly used as a threshold-independent evaluation of model performance. See com-
mission error and omission error.

Requirements — The set of environmental factors without which a population cannot 

have positive growth rates.

Resolution — See grain, temporal resolution.

Resource variables — Variables consumed by organisms; equivalent to Hutchinson’s 

bionomic variables.

Response curves — The relationship between the species’ occurrence (dependent vari-

able) and individual environmental variables (independent variable), describing 

probabilities of presence for a species across the range of values of an environmen-

tal variable.

Road bias — The pattern in which most biological sampling takes place near roadways. 

See sampling bias.

ROC — See receiver operating characteristic plot.

S

Sampling bias — Variation in the probability that a site will be sampled by biologists. 

Often, such bias corresponds to accessibility (in G-space) and often also leads to 

sampling bias in E-space.

Sampling effort — Generally, the strength or intensity of sampling by biologists, but 

may also include consideration of the suite of techniques employed.

Scale — The broad and more or less nebulous concept that includes both extent and 

grain.

Scenopoetic fundamental niche — The combination of scenopoetic variables that permits 

a species to have positive intrinsic growth rates, in the absence of competitors. See 

abiotic niche, fundamental niche, Grinnellian niche.

Scenopoetic niche — A niche in an E-space of scenopoetic variables. See abiotic niche.

Scenopoetic variables — Variables that are not consumed or affected by individuals of a 

species. See E-space and scenopoetic niche; contrast with bionomic variables.

Secondary data (� secondary occurrence data) — Summaries or syntheses of primary 
occurrence data, typically via subjective processes and at a coarse resolution (e.g., 

range maps).

Secondary occurrence data — See secondary data.

Sensitivity — The absence of omission error. See confusion matrix.

Signifi cance — See model signifi cance.
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Sink populations — Populations in which population growth is insuffi cient to maintain 

populations without immigration. Contrast with source populations.

Source populations — Populations in which population growth is suffi cient to maintain 

populations without immigration. Contrast with sink populations.

Spatial autocorrelation — The pattern of entities being nonindependent in space—for 

example, in clusters of occurrences of a species. Spatial autocorrelation also occurs 

for environmental variables. Spatially autocorrelated occurrence data do not repre-

sent independent samples for model calibration or model evaluation.
Spatial extent — See extent.
Spatial interpolation — The process of estimating values of a variable merely by con-

sideration of places nearby in G-space. See also interpolation.

Spatial resolution — See grain.

Spatial transferability — See transferability.

Spatially structured data partitioning — See spatially structured data splitting.

Spatially structured data splitting (� spatially structured data partitioning) — A kind 

of data splitting where occurrence data are divided not randomly (as is typical) but 

rather spatially; hence, calibration data and evaluation data are more likely to be fully 

independent of each other. See sampling bias and overfi tting.

Species distribution modeling — Application of niche theory to questions about real 

spatial distributions of species, typically in the present—specifi cally, via estimation 

of the occupied distributional area from occurrence information for a species via its 

relationship to environmental characteristics and their correlations with dispersal 
limitation and biotic interactions. Contrast with ecological niche modeling, which 

aims to estimate the abiotically suitable area, from which other distributions (e.g., 

the potential distributional area and occupied distributional area) can be derived.

Specifi city — The absence of commission errorSee confusion matrix; note problems that 

arise because of apparent commission error.

Statistical signifi cance — See model signifi cance.

Study region — Defi ned by its extent, the area in geographic space (G-space) chosen for 

the analyses of a particular study. Generally, the study region for model calibration is 

the same as for model evaluation, but not necessarily. See background data and scale.

Suitability — The degree to which the environment is appropriate for the species in 

question. May be equal to probability of presence if certain assumptions are met (i.e., 

no dispersal limitations or limiting biotic interactions; see BAM diagram). Note also 

that evaluations of goodness-of-fi t assess the degree to which model output matches 

suitability (in contrast with nonparametric ranking approaches, such as the receiver 
operating characteristic plot).

Symmetric loss — A loss function that combines the omission error and commission 
error with equal weight. Contrast with asymmetric loss.

T

Temporal resolution — The time span covered by a particular parameter (e.g., an envi-
ronmental variable). See also grain.

Testing — See model evaluation.
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Test dataset — See evaluation data.

Threshold — Herein, the threshold of occurrence, the value at or above which a model is 

deemed to predict presence for the species. Various rules can be employed for selecting 

a threshold, but consideration must be given to the kind of primary occurrence data 

involved (e.g., presence-only data versus presence/absence data). See thresholding.

Threshold-dependent — A strategy and methodology for evaluating model performance 

or model signifi cance based on a binary prediction, typically obtained by applying 

a  threshold to a continuous or an ordinal prediction of suitability. Contrast with 

threshold-independent.
Threshold-independent — A strategy and methodology for evaluating model performance 

or model signifi cance without applying a threshold to convert a continuous or an or-

dinal prediction of suitability to a binary one of presence versus absence. Contrast with 

threshold-dependent.
Thresholding — Herein, the process selecting a threshold of occurrence, for convert-

ing continuous or ordinal model output to a binary prediction of “present” versus 

“absent.”

Training — See model calibration.

Training data — See calibration data.

Transferability — The application of a model (calibrated in one region) to another place 

in geography (G-space) and/or to another time period. Contrast with extrapolation.

U

Uncertainty — The likely or possible level of error regarding data or a prediction (here, 

relevant for primary occurrence data, environmental data, and model prediction).

V

Validation — See model validation.

Variable selection — Herein, decisions regarding which environmental data to use in 

modeling.

Verifi cation — See model verifi cation.

Voucher specimen — A physical specimen, typically deposited in a natural history mu-

seum or herbarium, that documents the presence of a species. Vouchered records 

represent the ideal kind of primary occurrence data.

19peterson.269_280.indd   28019peterson.269_280.indd   280 6/8/11   8:55 PM6/8/11   8:55 PM



Bibliography

Ackerly, D. D. 2003. Community assembly, niche conservatism, and adaptive evolution 

in changing environments. International Journal of Plant Sciences 164:S165–

S184.

Almeida, C. E., E. Folly-Ramos, A. T. Peterson, V. Lima-Neiva, M. Gumiel, R. Duarte, 

M. Locks, M. Beltrão, and J. Costa. 2009. Could the bug Triatoma sherlocki be 

vectoring Chagas disease in small mining communities in Bahia, Brazil? Medi-

cal and Veterinary Entomology 23:410–417.

Amarasekare, P. 2003. Competitive coexistence in spatially structured environments: A 

synthesis. Ecology Letters 6:1109–1122.

Anciães, M., and A. T. Peterson. 2006. Climate change effects on Neotropical manakin 

diversity based on ecological niche modeling. Condor 108:778–791.

———. 2009. Ecological niches and their evolution among Neotropical manakins 

(Aves: Pipridae). Journal of Avian Biology 40:591–604.

Anderson, B. J., H. R. Akçakaya, M. B. Araújo, D. A. Fordham, E. Martínez-Meyer, W. 

Thuiller, and B. W. Brook. 2009. Dynamics of range margins for metapopula-

tions under climate change. Proceedings of the Royal Society B 276:1415–1420.

Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of vari-

ance. Austral Ecology 26:32–46.

Anderson, R. P. 2003. Real vs. artefactual absences in species distributions: Tests for 

Oryzomys albigularis (Rodentia: Muridae) in Venezuela. Journal of Biogeogra-

phy 30:591–605.

Anderson, R. P., M. Gómez-Laverde, and A. T. Peterson. 2002a. Geographical distribu-

tions of spiny pocket mice in South America: Insights from predictive models. 

Global Ecology and Biogeography 11:131–141.

Anderson, R. P., D. Lew, and A. T. Peterson. 2003. Evaluating predictive models of spe-

cies’ distributions: Criteria for selecting optimal models. Ecological Modelling 

162:211–232.

Anderson, R. P., and E. Martínez-Meyer. 2004. Modeling species’ geographic distribu-

tions for preliminary conservation assessments: An implementation with the spiny 

pocket mice (Heteromys) of Ecuador. Biological Conservation 116:167–179.

Anderson, R. P., A. T. Peterson, and S. L. Egbert. 2006. Vegetation-index models pre-

dict areas vulnerable to purple loosestrife (Lythrum salicaria) invasion in Kan-

sas. Southwestern Naturalist 51:471–480.

Anderson, R. P., A. T. Peterson, and M. Gómez-Laverde. 2002b. Using niche-based GIS 

modeling to test geographic predictions of competitive exclusion and competi-

tive release in South American pocket mice. Oikos 98:3–16.

Anderson, R. P., and A. Raza. 2010. The effect of the extent of the study region on 

GIS models of species geographic distributions and estimates of niche evolution: 

short

20peterson.281_314.indd   28120peterson.281_314.indd   281 6/8/11   8:56 PM6/8/11   8:56 PM



2 8 2  B I B L I O G R A P H Y

Preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Jour-

nal of Biogeography 37:1378–1393.

Angert, A. L., and D. W. Schemske. 2005. The evolution of species’ distributions: recip-

rocal transplants across the elevation ranges of Mimulus cardinalis and M. lewisii. 
Evolution 59:1671–1684.

Angilletta, M. J., P. H. Niewiarowski, and C. A. Navas. 2002. The evolution of thermal 

physiology in ectotherms. Journal of Thermal Biology 27:249–268.

Araújo, M. B., M. Cabeza, W. Thuiller, L. Hannah, and P. H. Williams. 2004. Would 

climate change drive species out of reserves? An assessment of existing reserve 

selection methods. Global Change Biology 10:1618–1626.

Araújo, M. B., and A. Guisan. 2006. Five (or so) challenges for species’ distribution 

modelling. Journal of Biogeography 33:1677–1688.

Araújo, M. B., C. J. Humphries, P. J. Densham, R. Lampinen, W.J.M. Hagemeijer, A. J. 

Mitchell-Jones, and J. P. Gasc. 2001. Would environmental diversity be a good 

surrogate for species diversity? Ecography 24:103–110.

Araújo, M. B., and M. Luoto. 2007. The importance of biotic interactions for modelling 

species distributions under climate change. Global Ecology and Biogeography 

16:743–753.

Araújo, M. B., and M. New. 2007. Ensemble forecasting of species distributions. Trends 

in Ecology and Evolution 22:42–47.

Araújo, M. B., and R. G. Pearson. 2005. Equilibrium of species’ distributions with cli-

mate. Ecography 28:693–695.

Araújo, M. B., R. G. Pearson, W. Thuiller, and M. Erhard. 2005a. Validation of species-

climate impact models under climate change. Global Change Biology 11:1504–

1513.

Araújo, M. B., and C. Rahbek. 2006. How does climate change affect biodiversity? Sci-

ence 313:1396–1397.

Araújo, M. B., W. Thuiller, and R. G. Pearson. 2006. Climate warming and the decline 

of amphibians and reptiles in Europe. Journal of Biogeography 33:1712–1728.

Araújo, M. B., W. Thuiller, P. H. Williams, and I. Reginster. 2005b. Downscaling Euro-

pean species atlas distributions to a fi ner resolution: implications for conservation 

planning. Global Ecology and Biogeography 14:17–30.

Araújo, M. B., W. Thuiller, and N. G. Yoccoz. 2009. Reopening the climate envelope 

reveals macroscale associations with climate in European birds. Proceedings of 

the National Academy of Sciences USA 106:E45–E46.

Araújo, M. B., R. J. Whittaker, R. J. Ladle, and M. Erhard. 2005c. Reducing uncertainty 

in projections of extinction risk from climate change. Global Ecology and Bio-

geography 14:529–538.

Araújo, M. B., and P. H. Williams. 2000. Selecting areas for species persistence using 

occurrence data. Biological Conservation 96:331–345.

Araújo, M. B., P. H. Williams, and R. J. Fuller. 2002. Dynamics of extinction and the 

selection of nature reserves. Proceedings of the Royal Society B 269:1971–

1980.

Argáez, J. A., J. Andrés Christen, M. Nakamura, and J. Soberón. 2005. Prediction of 

potential areas of species distributions based on presence-only data. Environmental 

and Ecological Statistics 12:27–44.

short

20peterson.281_314.indd   28220peterson.281_314.indd   282 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  2 8 3

Aspinall, R. J., and B. G. Lees. 1994. Sampling and analysis of spatial environmental 

data. In Advances in Spatial Data Handling, T. C. Waugh and R. G. Healey, edi-

tors, pp. 1066–1097. University of Edinburgh, Edinburgh, UK.

Austin, M. P. 1980. Searching for a model to use in vegetation analysis. Vegetatio 42:

11–21.

———. 1985. Continuum concept, ordination methods, and niche theory. Annual Re-

view of Ecology and Systematics 16:39–61.

———. 2002. Spatial prediction of species distribution: An interface between ecologi-

cal theory and statistical modelling. Ecological Modelling 157:101–118.

Austin, M. P., L. Belbin, J. A. Meyers, M. D. Doherty, and M. Luoto. 2006. Evaluation 

of statistical models used for predicting plant species distributions: Role of arti-

fi cial data and theory. Ecological Modelling 199:197–216.

Austin, M. P., A. O. Nicholls, and C. R. Margules. 1990. Measurement of the realized 

qualitative niche: Environmental niches of fi ve Eucalyptus species. Ecological 

Monographs 60:161–177.

Austin, M. P., and T. M. Smith. 1989. A new model for the continuum concept. Vegeta-

tio 83:35–47.

Australian Weed Committee. 2008. Weeds Australia, http://www.weeds.org.au/. Aus-

tralian Weed Committee, Canberra.

Avise, J. C. 2000. Phylogeography: The History and Formation of Species. Harvard 

University Press, Cambridge, MA.

Bahn, V., and B. J. McGill. 2007. Can niche-based distribution models outperform spa-

tial interpolation? Global Ecology and Biogeography 16:733–742.

Bailey, N.T.J. 1964. The Elements of Stochastic Processes. John Wiley & Sons, New 

York.

Balanyá, J., J. M. Oller, R. B. Huey, G. W. Gilchrist, and L. Serra. 2006. Global genetic 

change tracks global climate warming in Drosophila subobscura. Science 313:

1773–1775.

Barry, S., and J. Elith. 2006. Error and uncertainty in habitat models. Journal of Applied 

Ecology 43:413–423.

Barve, N., V. Barve, A. Jiménez-Valverde, A. Lira-Noriega, S. P. Maher, A. T. Peterson, 

J. Soberón, and F. Villalobos. 2011. The crucial role of the accessible area in 

ecological niche modeling and species distribution modeling. Ecological Model-

ling: doi:10.1016/j.ecolmodel.2011.02.011.

Baselga, A., and M. B. Araújo. 2009. Individualistic vs. community modelling of spe-

cies distributions under climate change. Ecography 32:55–65.

Basille, M., C. Calenge, E. Marboutin, R. Andersen, and J.-M. Gaillard. 2008. As-

sessing habitat selection using multivariate statistics: Some refi nements of the 

ecological-niche factor analysis. Ecological Modelling 211:233–240.

Bates, J. M., and C. W. Granger. 1969. The combination of forecasts. Operational Re-

search Quarterly 20:451–468.

BBS. 2008. North American Breeding Bird Survey. U.S. Geological Survey, http://www

.mbr-pwrc.usgs.gov/bbs/, Washington, DC.

Beale, C. M., J. J. Lennon, and A. Gimona. 2008. Opening the climate envelope reveals 

no macroscale associations with climate in European birds. Proceedings of the 

National Academy of Sciences USA 105:14908–14912.

short

20peterson.281_314.indd   28320peterson.281_314.indd   283 6/8/11   8:56 PM6/8/11   8:56 PM



2 8 4  B I B L I O G R A P H Y

Beard, C. B., G. Pye, F. J. Steurer, R. Rodríguez, R. Campman, A. T. Peterson, 

J. Ramsey, R. A. Wirtz, and L. E. Robinson. 2003. Chagas disease in a domestic 

transmission cycle in southern Texas, USA. Emerging Infectious Diseases 9:

103–105.

Beaumont, L. J., R. V. Gallagher, W. Thuiller, P. O. Downey, M. R. Leishman, and 

L. Hughes. 2009. Different climatic envelopes among invasive populations may 

lead to underestimations of current and future biological invasions. Diversity and 

Distributions 15:409–420.

Beaumont, L. J., L. Hughes, and M. Poulsen. 2005. Predicting species distributions: 

Use of climatic parameters in BIOCLIM and its impact on predictions of spe-

cies’ current and future distributions. Ecological Modelling 186:251–270.

Beaumont, L. J., A. J. Pitman, M. Poulsen, and L. Hughes. 2007. Where will species 

go? Incorporating new advances in climate modelling into projections of species 

distributions. Global Change Biology 13:1368–1385.

Beerling, D. J., B. Huntley, and J. P. Bailey. 1995. Climate and the distribution of Fal-
lopia japonica: Use of an introduced species to test the predictive capacity of 

response surfaces. Journal of Vegetation Science 6:269–282.

Begon, M., C. R. Townsend, and J. L. Harper. 2006. Ecology: From Individuals to Eco-
systems, 4th ed. Blackwell Publishing, Oxford, UK.

Bell, G. 1982. The Masterpiece of Nature: The Evolution and Genetics of Sexuality. 

Croom Helm, London.

Bell, G., and A. Gonzalez. 2009. Evolutionary rescue can prevent extinction following 

environmental change. Ecology Letters 12:942–948.

Benedict, M. Q., R. S. Levine, W. A. Hawley, and L. P. Lounibos. 2007. Spread of the 

tiger: Global risk of invasion by the mosquito Aedes albopictus. Vector-Borne 

and Zoonotic Diseases 7:76–85.

Berry, P. M., T. P. Dawson, P. A. Harrison, and R. G. Pearson. 2002. Modelling potential 

impacts of climate change on the bioclimatic envelope of species in Britain and 

Ireland. Global Ecology and Biogeography 11:453–462.

Bhalla, D. K., and D. B. Warheit. 2004. Biological agents with potential for misuse: A 

historical perspective and defensive measures. Toxicology and Applied Pharma-

cology 199:71–84.

Birch, L. C. 1953. Experimental background to the study of the distribution and abun-

dance of insects. I. The infl uence of temperature, moisture, and food on the in-

nate capacity for increase of three grain beetles. Ecology 34:698–711.

Bojórquez-Tapia, L. A., I. Azuara, E. Ezcurra, and O. Flores-Villela. 1995. Identifying 

conservation priorities in Mexico through geographic information systems and 

modeling. Ecological Applications 5:215–231.

Boman, S., A. Grapputo, L. Lindstrom, A. Lyytinen, and J. Mappes. 2008. Quantitative 

genetic approach for assessing invasiveness: Geographic and genetic variation in 

life-history traits. Biological Invasions 10:1135–1145.

Boulinier, T., J. D. Nichols, J. R. Sauer, J. E. Hines, and K. H. Pollock. 1998. Estimating 

species richness: The importance of heterogeneity in species detectability. Ecol-

ogy 79:1018–1028.

Bourg, N. A., W. J. McShea, and D. E. Gill. 2005. Putting a CART before the search: 

Successful habitat prediction for a rare forest herb. Ecology 86:2793–2804.

short

20peterson.281_314.indd   28420peterson.281_314.indd   284 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  2 8 5

Boyce, M. S., P. R. Vernier, S. E. Nielsen, and F.K.A. Schmiegelow. 2002. Evaluating 

resource selection functions. Ecological Modelling 157:281–300.

Bradley, B. A., and E. Fleishman. 2008. Can remote sensing of land cover improve spe-

cies distribution modeling? Journal of Biogeography 35:1158–1159.

Brankston, G., L. Gitterman, Z. Hirji, C. Lemieux, and M. Gardam. 2007. Transmission 

of infl uenza A in human beings. Lancet Infectious Diseases 7:257–265.

Breiman, L. 2001. Statistic modeling: The two cultures. Statistical Science 16:199–215.

Breiman, R. F., M. R. Evans, W. Preiser, J. Maguire, A. Schnur, A. Li, H. Bekedam, and 

J. S. MacKenzie. 2003. Role of China in the quest to defi ne and control Severe 

Acute Respiratory Syndrome. Emerging Infectious Diseases 9:1037–1041.

Bright, P. W., and T. J. Smithson. 2001. Biological invasions provide a framework for 

reintroductions: Selecting areas in England for pine marten releases. Biodiversity 

and Conservation 10:1247–1265.

Broennimann, O., U. A. Treier, H. Müller-Schaerer, W. Thuiller, A. T. Peterson, and A. 

Guisan. 2007. Evidence of climatic niche shift during biological invasion. Ecol-

ogy Letters 10:701–709.

Brooks, T. M., S. L. Pimm, and N. J. Collar. 1997. Deforestation predicts the number of 

threatened birds in insular Southeast Asia. Conservation Biology 11:382–394.

Brotons, L., W. Thuiller, M. B. Araújo, and A. H. Hirzel. 2004. Presence/absence versus 

presence-only modelling methods for predicting bird habitat suitability. Ecogra-

phy 27:437–448.

Broussard, L. A. 2001. Biological agents: Weapons of warfare and bioterrorism. Mo-

lecular Diagnosis 6:323–333.

Brown, J. H. 1971. Mechanisms of competitive exclusion between two species of chip-

munks. Ecology 52:305–311.

———. 1995. Macroecology. University of Chicago Press, Chicago.

Brown, J. H., G. C. Stevens, and D. M. Kaufman. 2003. The geographic range: Size, 

shape, boundaries, and internal structure. Annual Review of Ecology and Sys-

tematics 27:597–623.

Brown, J. S., and N. B. Pavlovic. 1992. Evolution in heterogeneous environments: Ef-

fects of migration on habitat specialization. Evolutionary Ecology 6:360–382.

Buckland, S. T., A. E. Magurran, R. E. Green, and R. M. Fewster. 2005. Monitoring 

change in biodiversity through composite indices. Philosophical Transactions of 

the Royal Society B 360:243–254.

Buckley, L. B. 2008. Linking traits to energetics and population dynamics to predict 

lizard ranges in changing environments. American Naturalist 171:E1–E19.

Buckley, T. R., K. Marske, and D. Attanayake. 2010. Phylogeography and ecological 

niche modelling of the New Zealand stick insect Clitarchus hookeri (White) sup-

port survival in multiple coastal refugia. Journal of Biogeography 37:682–695.

Buermann, W., S. Saatchi, T. B. Smith, B. R. Zutta, J. A. Chaves, B. Mila, and C. H. 

Graham. 2008. Predicting species distributions across the Amazonian and An-

dean regions using remotely sensed data. Journal of Biogeography 35:1160–

1176.

Bullock, J. M., R. J. Edwards, P. D. Carey, and R. J. Rose. 2000. Geographical separa-

tion of two Ulex species at three spatial scales: Does competition limit species’ 

ranges? Ecography 23:257–271.

short

20peterson.281_314.indd   28520peterson.281_314.indd   285 6/8/11   8:56 PM6/8/11   8:56 PM



2 8 6  B I B L I O G R A P H Y

Bunn, A. G., D. L. Urban, and T. H. Keitt. 2000. Landscape connectivity: A conserva-

tion application of graph theory. Journal of Environmental Management 59:

265–278.

Burg, T. M., and J. P. Croxall. 2004. Global population structure and taxonomy of the 

wandering albatross species complex. Molecular Ecology 13:2345–2355.

Busby, J. R. 1991. BIOCLIM—A bioclimate analysis and prediction system. Plant Pro-

tection Quarterly 6:8–9.

Cade, T. J., and S. A. Temple. 1995. Management of threatened bird species: Evaluation 

of the hands-on approach. Ibis 137:S161–S172.

Cadena, C. D., and A. M. Cuervo. 2009. Molecules, ecology, morphology, and songs in 

concert: How many species is Arremon torquatus (Aves: Emberizidae)? Biologi-

cal Journal of the Linnaean Society 99:152–176.

Calenge, C., G. Darmon, M. Basille, A. Loison, and J.-M. Jullien. 2008. The factorial 

decomposition of the Mahalanobis distances in habitat selection studies. Ecology 

89:555–566.

Carnes, B., and N. A. Slade. 1982. Some comments on niche in canonical space. Ecol-

ogy 63:888–893.

Carpenter, G., A. N. Gillson, and J. Winter. 1993. DOMAIN: A fl exible modelling pro-

cedure for mapping potential distributions of plants and animals. Biodiversity and 

Conservation 2:667–680.

Carroll, C., M. K. Phillips, N. H. Schumaker, and D. W. Smith. 2003. Impacts of land-

scape change on wolf restoration success: Planning a reintroduction program 

based on static and dynamic spatial models. Conservation Biology 17:536–548.

Carstens, B. C., and C. L. Richards. 2007. Integrating coalescent and ecological niche 

modeling in comparative phylogeography. Evolution 61:1439–1454.

Castro-Esau, K. L., G. A. Sánchez-Azofeifa, and T. Caelli. 2004. Discrimination of lia-

nas and trees with leaf-level hyperspectral data. Remote Sensing of Environment 

90:353–372.

Ceballos, G., and P. R. Ehrlich. 2006. Global mammal distributions, biodiversity hot-

spots, and conservation. Proceedings of the National Academy of Sciences USA 

103:19374–19379.

Chalmers, N. R. 1996. Monitoring and inventorying biodiversity: Collections, data, and 

training. In Biodiversity, Science and Development: Towards a New Partnership, 

F. di Castri and T. Younes, editors, pp. 171–179. CAB International, Wallingford, 

UK.

Chapin, F. S., III, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reyn-

olds, D. U. Hooper, S. Lavorel, O. E. Sala, S. E. Hobbie, M. C. Mack, and S. Diaz. 

2000. Consequences of changing biodiversity. Nature 405:234–242.

Chapman, A. D. 2005. Principles of Data Quality, Version 1.0. Global Biodiversity In-

formation Facility, Copenhagen.

Chase, J. M., and M. A. Leibold. 2003. Ecological Niches: Linking Classical and Con-
temporary Approaches. University of Chicago Press, Chicago.

Chen, G., and A. T. Peterson. 2002. Prioritization of areas in China for the conservation 

of endangered birds using modelled geographical distributions. Bird Conserva-

tion International 12:197–209.

Chesmore, D. 2004. Automated bioacoustic identifi cation of species. Anais da Aca-

demia Brasileira de Ciências 76:436–440.

20peterson.281_314.indd   28620peterson.281_314.indd   286 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  2 8 7

Chesmore, E. D., and E. Ohya. 2007. Automated identifi cation of fi eld-recorded songs 

of four British grasshoppers using bioacoustic signal recognition. Bulletin of 

Entomological Research 94:319–330.

Chesson, P. 2000. General theory of competitive coexistence in spatially varying envi-

ronments. Theoretical Population Biology 58:211–237.

Clark, M. L., D. A. Roberts, and D. B. Clark. 2005. Hyperspectral discrimination of 

tropical rain forest tree species at leaf to crown scales. Remote Sensing of Envi-

ronment 96:375–398.

Clavero, M., and E. García-Berthou. 2005. Invasive species are a leading cause of ani-

mal extinctions. Trends in Ecology and Evolution 20:110.

Clemen, R. T. 1989. Combining forecasts: A review and annotated bibliography. Inter-

national Journal of Forecasting 5:559–583.

Cody, M. L. 1974. Competition and the Structure of Bird Communities. Princeton Uni-

versity Press, Princeton, NJ.

Collingham, Y. C., M. O. Hill, and B. Huntley. 1996. The migration of sessile organisms: 

A simulation model with measurable parameters. Journal of Vegetation Science 

7:831–846.

Colwell, R. K. 1992. Niche: A bifurcation in the conceptual lineage of the term. In 

Keywords in Evolutionary Biology, E. F. Keller and E. A. Lloyd, editors, pp. 241–

248. Harvard University Press, Cambridge, MA.

Colwell, R. K., and J. A. Coddington. 1994. Estimating terrestrial biodiversity through 

extrapolation. Philosophical Transactions of the Royal Society of London B 345:

101–118.

Colwell, R. K., and E. R. Fuentes. 1975. Experimental studies of the niches. Annual 

Review of Ecology and Systematics 6:281–310.

Colwell, R. K., and D. J. Futuyma. 1971. On the measurement of niche breadth and 

overlap. Ecology 52:567–576.

Colwell, R. K., and T. F. Rangel. 2009. Hutchinson’s duality: The once and future niche. 

Proceedings of the National Academy of Sciences USA 106:19651–19658.

CONABIO. 2009. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, 

http://www.conabio.gob.mx. Mexico City.

Cordellier, M., and M. Pfenninger. 2009. Inferring the past to predict the future: Cli-

mate modelling predictions and phylogeography for the freshwater gastropod 

Radix balthica (Pulmonata, Basommatophora). Molecular Ecology 18:534–

544.

Costa, G. C., C. Wolfe, D. B. Shepard, J. P. Caldwell, and L. J. Vitt. 2008. Detecting the 

infl uence of climatic variables on species distributions: A test using GIS niche-

based models along a steep longitudinal environmental gradient. Journal of Bio-

geography 35:637–646.

Costa, J., M.G.R. Freitas-Sibajev, V. Marchón-Silva, M. Quinhoñes-Pires, and R. S. 

Pacheco. 1997. Isoenzymes detect variation in populations of Triatoma brasilien-
sis (Hemiptera: Reduviidae: Triatominae). Memórias do Instituto Oswaldo Cruz 

92:459–464.

Costa, J., A. T. Peterson, and C. B. Beard. 2002. Ecological niche modeling and differ-

entiation of populations of Triatoma brasiliensis Neiva, 1911, the most important 

Chagas disease vector in northeastern Brazil (Hemiptera, Reduviidae, Triatomi-

nae). American Journal of Tropical Medicine and Hygiene 67:516–520.

20peterson.281_314.indd   28720peterson.281_314.indd   287 6/8/11   8:56 PM6/8/11   8:56 PM



2 8 8  B I B L I O G R A P H Y

Cramer, J. S. 2003. Logit Models: From Economics and Other Fields. Cambridge Uni-

versity Press, Cambridge, UK.

Crisci, J. V., L. Katinas, and P. Posadas. 2003. Historical Biogeography: An Introduc-
tion. Harvard University Press, Cambridge, MA.

Crooks, K. R., and M. E. Soulé. 1999. Mesopredator release and avifaunal extinctions 

in a fragmented system. Nature 400:563–566.

Crozier, L. G. 2004. Field transplants reveal summer constraints on a butterfl y range 

expansion. Oecologia 141:148–157.

Crozier, L. G., and G. Dwyer. 2006. Combining population-dynamic and ecophysiolog-

ical models to predict climate-induced insect range shifts. American Naturalist 

167:853–866.

Cunha, B. A. 2002. Anthrax, tularemia, plague, ebola, or smallpox as agents of bio-

terrorism: Recognition in the emergency room. Clinical Microbiology and Infec-

tion 8:489–503.

Cunningham, C. W., K. E. Omland, and T. H. Oakley. 1998. Reconstructing ancestral char-

acter states: A critical reappraisal. Trends in Ecology and Evolution 13:361–366.

Davies, R. G., C.D.L. Orme, V. Olson, G. H. Thomas, S. G. Ross, T.-S. Ding, P. C. 

Rasmussen, A. J. Stattersfi eld, P. M. Bennett, T. M. Blackburn, I.P.F. Owens, and 

K. J. Gaston. 2006. Human impacts and the global distribution of extinction risk. 

Proceedings of the Royal Society B 273:2127–2133.

Davis, A. J., L. S. Jenkinson, J. H. Lawton, B. Shorrocks, and S. Wood. 1998. Making 

mistakes when predicting shifts in species range in response to global warming. 

Nature 391:783–786.

De’ath, G., and K. E. Fabricius. 2000. Classifi cation and regression trees: A powerful 

yet simple technique for ecological data analysis. Ecology 81:3178–3192.

Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. 

Haak, and P. R. Martin. 2008. Impacts of climate warming on terrestrial ecto-

therms across latitude. Proceedings of the National Academy of Sciences USA 

105: 6668–6672.

DiMichele, W. A., A. K. Behrensmeyer, T. D. Olszewski, C. C. Labandiera, J. M. Pan-

dolfi , S. L. Wing, and R. Bobe. 2004. Long-term stasis in ecological assemblages: 

Evidence from the fossil record. Annual Review of Ecology, Evolution, and Sys-

tematics 35:285–322.

Diniz-Filho, J. A. F., L. M. Bini, T. F. Rangel, R. D. Loyola, C. Hof, D. Nogués-Bravo, 

and M. B. Araújo. 2009. Partitioning and mapping uncertainties in ensembles of 

forecasts of species turnover under climate change. Ecography 32:897–906.

Dobson, A. P., A. Jolly, and D. Rubenstein. 1989. The greenhouse effect and biological 

diversity. Trends in Ecology and Evolution 4:64–68.

Dodd, L. E., and M. S. Pepe. 2003. Partial AUC estimation and regression. Biometrics 

59:614–623.

Doledec, S., D. Chessel, and C. Gimaret-Carpentier. 2000. Niche separation in com-

munity analysis: A new method. Ecology 81:2914–2927.

Dormann, C. F., J. M. McPherson, M. B. Araújo, R. Bivand, J. Bolliger, G. Carl, R. G. 

Davies, A. Hirzel, W. Jetz, W. D. Kissling, I. Kühn, R. Ohlemüller, P. R. Peres-

Neto, B. Reineking, B. Schröder, F. M. Schurr, and R. Wilson. 2007. Methods to 

account for spatial autocorrelation in the analysis of species distributional data: 

A review. Ecography 30:609–628.

20peterson.281_314.indd   28820peterson.281_314.indd   288 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  2 8 9

Dray, S., D. Chessel, and J. Thioulouse. 2003. Co-inertia analysis and the linking of 

ecological data tables. Ecology 84:3078–3089.

Drezner, T. D., and C. M. Garrity. 2003. Saguaro distribution under nurse plants in Ari-

zona’s Sonoran Desert: Directional and microclimate infl uences. Professional 

Geographer 55:505–512.

Dueser, R. D., and H. H. Shuggart, Jr. 1979. Niche pattern in a forest-fl oor small- 

mammal fauna. Ecology 60:108–118.

Dullinger, S., I. Kleinbauer, J. Peterseil, M. Smolik, and F. Essl. 2009. Niche-based 

distribution modelling of an invasive alien plant: Effects of population status, 

propagule pressure, and invasion history. Biological Invasions 11:2401–2414.

Eaton, M. D., J. Soberón, and A. T. Peterson. 2008. Phylogenetic perspective on eco-

logical niche evolution in American blackbirds (Family Icteridae). Biological 

Journal of the Linnaean Society 94:869–878.

Edwards, J. L. 2004. Research and societal benefi ts of the global biodiversity informa-

tion facility. BioScience 54:485–486.

Efron, B. 1987. The Jackknife, the Bootstrap, and Other Resampling Plans. Society for 

Industrial and Applied Mathematics, Philadelphia.

Efron, B., and R. J. Tibshirani. 1993. An Introduction to the Bootstrap. Chapman and 

Hall, New York.

Egbert, S. L., E. Martínez-Meyer, M. A. Ortega-Huerta, and A. T. Peterson. 2002. Use 

of datasets derived from time-series AVHRR imagery as surrogates for land cover 

maps in predicting species’ distributions. Proceedings IEEE 2002 International 

Geoscience and Remote Sensing Symposium (IGARSS) 4:2337–2339.

Eisen, L., and R. J. Eisen. 2007. Need for improved methods to collect and present 

spatial epidemiologic data for vectorborne diseases. Emerging Infectious Diseases 

13:1816–1820.

Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J. Hijmans, 

F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loi-

selle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. 

Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, 

J. Soberón, S. Williams, M. S. Wisz, and N. E. Zimmermann. 2006. Novel meth-

ods improve prediction of species’ distributions from occurrence data. Ecogra-

phy 29:129–151.

Elith, J., and J. R. Leathwick. 2007. Predicting species distributions from museum and 

herbarium records using multiresponse models fi tted with multivariate adaptive 

regression splines. Diversity and Distributions 13:265–275.

Elith, J., J. R. Leathwick, and T. Hastie. 2008. A working guide to boosted regression 

trees. Journal of Animal Ecology 77:802–813.

Elliott, P., J. C. Wakefi eld, N. G. Best, and D. J. Briggs. 2000. Spatial Epidemiology: 
Methods and Applications. Oxford University Press, Oxford, UK.

Elliott, P., and D. Wartenberg. 2004. Spatial epidemiology: Current approaches and 

future challenges. Environmental Health Perspectives 112:998–1006.

Elkinton, J. S., and A. M. Liebhold. 1990. Population dynamics of gypsy moth in North 

America. Annual Review of Ecology and Systematics 35:571–596.

Elton, C. S. 1927. Animal Ecology. Sidgwick and Jackson, London.

Engler, R., and A. Guisan. 2009. MigClim: Predicting plant distribution and dispersal in 

a changing climate. Diversity and Distributions 15:590–601.

20peterson.281_314.indd   28920peterson.281_314.indd   289 6/8/11   8:56 PM6/8/11   8:56 PM



2 9 0  B I B L I O G R A P H Y

Erasmus, B.F.N., A. S. Van Jaarsveld, S. L. Chown, M. Kshatriya, and K. J. Wessels. 

2002. Vulnerability of South African animal taxa to climate change. Global Change 

Biology 8:679–693.

Erickson, R. O. 1945. The Clematis fremontii var. riehlii population of the Ozarks. An-

nals of the Missouri Botanical Garden 32:413–460.

Erwin, T. L. 1991. How many species are there? Revisited. Conservation Biology 5:

330–333.

Faith, D. P. 1993. Biodiversity and systematics: The use and misuse of divergence 

 information in assessing taxonomic diversity. Pacifi c Conservation Biology 1:

53–57.

Farber, O., and R. Kadmon. 2003. Assessment of alternative approaches for bioclimatic 

modeling with special emphasis on the Mahalanobis distance. Ecological Model-

ling 160:115–130.

Feria, T. P., and A. T. Peterson. 2002. Prediction of bird community composition based 

on point-occurrence data and inferential algorithms: A valuable tool in biodiver-

sity assessments. Diversity and Distributions 8:49–56.

Ferrier, S., G.V.N. Powell, K. S. Richardson, G. Manion, J. M. Overton, T. F. Allnutt, 

S. E. Cameron, K. Mantle, N. D. Burgess, D. P. Faith, J. F. Lamoreux, G. Kier, 

R. J. Hijmans, V. A. Funk, G. A. Cassis, B. L. Fisher, P. Flemons, D. Lees, J. C. 

Lovett, and R.S.A.R. Van Rompaey. 2004. Mapping more of terrestrial biodiver-

sity for global conservation assessment. BioScience 54:1101–1109.

Ferrier, S., G. Watson, J. Pearce, and M. Drielsma. 2002. Extended statistical approaches 

to modelling spatial pattern in biodiversity in northeast New South Wales. I. 

Species-level modelling. Biodiversity and Conservation 11:2275–2307.

Fielding, A. H., and J. F. Bell. 1997. A review of methods for the assessment of predic-

tion errors in conservation presence/absence models. Environmental Conservation 

24:38–49.

Fielding, A. H., and P. F. Haworth. 1995. Testing the generality of bird-habitat models. 

Conservation Biology 9:1466–1481.

Fitzpatrick, M. C., and J. F. Weltzin. 2005. Ecological niche models and the geography 

of biological invasions: A review and novel application. In Invasive Plants: Eco-
logical and Agricultural Aspects, S. Inderjit, editor, pp. 45–60. Birkhauser Basel, 

Switzerland.

Fitzpatrick, M. C., J. F. Weltzin, N. J. Sanders, and R. R. Dunn. 2007. The biogeography 

of prediction error: Why does the introduced range of the fi re ant over-predict its 

native range? Global Ecology and Biogeography 16:24–33.

Foden, W., G. F. Midgley, G. Hughes, W. J. Bond, W. Thuiller, M. T. Hoffman, P. Ka-

leme, L. G. Underhill, A. Rebelo, and L. Hannah. 2007. A changing climate is 

eroding the geographical range of the Namib Desert tree Aloe through population 

declines and dispersal lags. Diversity and Distributions 13:645–653.

Fotheringham, A. S., C. Brunsdon, and M. Charlton. 2000. Quantitative Geography: 
Perspectives on Spatial Data Analysis. SAGE Publications, London.

Franklin, J. 2010. Mapping Species Distributions: Spatial Inference and Prediction. Cam-

bridge University Press, Cambridge, UK.

Freeman, E. A., and G. G. Moisen. 2008. A comparison of the performance of threshold 

criteria for binary classifi cation in terms of predicted prevalence and Kappa. 

Ecological Modelling 217:48–58.

20peterson.281_314.indd   29020peterson.281_314.indd   290 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  2 9 1

Funk, V. A., and K. S. Richardson. 2002. Systematic data in biodiversity studies: Use it 

or lose it. Systematic Biology 51:303–316.

Ganeshaiah, K. N., N. Barve, N. Nath, K. Chandrashekara, M. Swamy, and R. U. 

Shaanker. 2003. Predicting the potential geographical distribution of the sugar-

cane woolly aphid using GARP and DIVA-GIS. Current Science 85:1526–1528.

Garland, T., Jr., P. E. Midford, and A. R. Ives. 1999. An introduction to phylogenetically 

based statistical methods, with a new method for confi dence intervals on ances-

tral values. American Zoologist 39:374–388.

Gaston, K. J. 2003. The Structure and Dynamics of Geographic Ranges. Oxford Uni-

versity Press, Oxford, UK.

Gaubert, P., M. Papes̨, and A. T. Peterson. 2006. Natural history collections and the 

conservation of poorly known taxa: Ecological niche modeling in central African 

rainforest genets (Genetta spp.). Biological Conservation 130:106–117.

Gause, G. F. 1936. The Struggle for Existence. Williams and Wilkins, Baltimore.

Getz, W. M., and C. C. Wilmers. 2004. A local nearest-neighbor convex-hull construc-

tion of home ranges and utilization distributions. Ecography 27:489–505.

Godown, M. E., and A. T. Peterson. 2000. Preliminary distributional analysis of U.S. 

endangered bird species. Biodiversity and Conservation 9:1313–1322.

Godsoe, W. 2010. I can’t defi ne the niche but I know it when I see it: A formal link be-

tween statistical theory and the ecological niche. Oikos 119:53–60.

Golubov, J., M. C. Mandujano, and J. Soberón. 2001. La posible invasión de Cactoblas-
tis cactorum Berg en México. Cactáceas y Suculentas Mexicanas 46:75–78.

González, C., O. Wang, S. E. Strutz, C. González-Salazar, V. Sánchez-Cordero, and 

S.  Sarkar. 2010. Climate change and risk of leishmaniasis in North America: 

Predictions from ecological niche models of vector and reservoir species. PLoS 

Neglected Tropical Diseases 4:e585.

Good, R. D. 1931. A theory of plant geography. New Phytologist 30:149–171.

Gordon, M. S., and E. C. Olson. 1994. Invasions of the Land: The Transitions of Organ-
isms from Aquatic to Terrestrial Life. Columbia University Press, New York.

Gower, J. C. 1971. A general coeffi cient of similarity and some of its properties. Bio-

metrics 27:857–871.

Graham, C. H., J. Elith, R. J. Hijmans, A. Guisan, A. T. Peterson, B. A. Loiselle, and the 

NCEAS Predicting Species Distributions Working Group. 2007. The infl uence of 

spatial errors in species occurrence data used in distribution models. Journal of 

Applied Ecology 45:239–247.

Graham, C. H., S. Ferrier, F. Huettman, C. Moritz, and A. T. Peterson. 2004a. New de-

velopments in museum-based informatics and applications in biodiversity analy-

sis. Trends in Ecology and Evolution 19:497–503.

Graham, C. H., and R. J. Hijmans. 2006. A comparison of methods for mapping species 

ranges and species richness. Global Ecology and Biogeography 15:578–587.

Graham, C. H., S. R. Ron, J. C. Santos, C. J. Schneider, and C. Moritz. 2004b. Integrat-

ing phylogenetics and environmental niche models to explore speciation mecha-

nisms in dendrobatid frogs. Evolution 58:1781–1793.

Graham, R. W., E. L. Lundelius, M. A. Graham, E. K. Schroeder, R. S. Toomey, 

E.  Anderson, A. D. Barnosky, J. A. Burns, C. S. Churcher, D. K. Grayson, R. D. 

Guthrie, C. R. Harington, G. T. Jefferson, L. D. Martin, H. G. McDonald, R. E. 

Morlan, H. A. Semken, S. D. Webb, L. Werdelin, and M. C. Wilson. 1996. Spatial 

20peterson.281_314.indd   29120peterson.281_314.indd   291 6/8/11   8:56 PM6/8/11   8:56 PM



2 9 2  B I B L I O G R A P H Y

response of mammals to late quaternary environmental fl uctuations. Science 

272:1601–1606.

Green, R. E., Y. C. Collingham, S. G. Willis, R. D. Gregory, K. W. Smith, and B. Hunt-

ley. 2008. Performance of climate envelope models in retrodicting recent changes 

in bird population size from observed climatic change. Biology Letters 4:599–

602.

Green, R. H. 1971. A multivariate statistical approach to the Hutchinsonian niche: Bi-

valve molluscs of central Canada. Ecology 52:544–556.

Grinnell, J. 1917. The niche-relationships of the California Thrasher. Auk 34:427–433.

Guisan, A., O. Broennimann, R. Engler, M. Vust, N. G. Yoccoz, A. Lehman, and N. E. 

Zimmermann. 2006. Using niche-based models to improve the sampling of rare 

species. Conservation Biology 20:501–511.

Guisan, A., T. C. Edwards, Jr., and T. Hastie. 2002. Generalized linear and generalized 

additive models in studies of species distributions: Setting the scene. Ecological 

Modelling 157:89–100.

Guisan, A., C. H. Graham, J. Elith, F. Huettman, and the NCEAS Predicting Species 

Distributions Working Group. 2007. Sensitivity of predictive species distribution 

models to change in grain size. Diversity and Distributions 13:332–340.

Guisan, A., and W. Thuiller. 2005. Predicting species distribution: Offering more than 

simple habitat models. Ecology Letters 8:993–1009.

Guisan, A., and N. E. Zimmermann. 2000. Predictive habitat distribution models in 

ecology. Ecological Modelling 135:147–186.

Guo, Q., M. Kelly, and C. H. Graham. 2005. Support vector machines for predicting 

distribution of sudden oak death in California. Ecological Modelling 182:75–90.

Guralnick, R. P., J. Wieczorek, R. Beaman, R. J. Hijmans, and the BioGeomancer 

Working Group. 2006. BioGeomancer: Automated georeferencing to map the 

world’s biodiversity data. PLoS Biology 4:e381.

Gyapong, J. O., D. Kyelem, I. Kleinschmidt, K. Agbo, F. Ahouandogbo, J. Gaba, 

G. Owusu-Banahene, S. Sanou, Y. K. Sodahlon, G. Biswas, O. O. Kale, D. H. 

Molyneux, J. B. Roungou, M. C. Thomson, and J. Remme. 2002. The use of 

spatial analysis in mapping the distribution of bancroftian fi lariasis in four West 

African countries. Annals of Tropical Medicine and Parasitology 96:695–705.

Hall, B. P., and R. E. Moreau. 1970. An Atlas of Speciation in African Passerine Birds. 

Trustees of the British Museum (Natural History), London.

Hall, E. R. 1981. The Mammals of North America, 2nd ed. John Wiley & Sons, New York.

Hampe, A. 2004. Bioclimate envelope models: What they detect and what they hide. 

Global Ecology and Biogeography 13:469–471.

Handley, C. O., Jr. 1976. Mammals of the Smithsonian Venezuelan Project. Brigham 

Young University Science Bulletin, Biological Series 20:1–91.

Hannah, L., G. Midgley, S. Andelman, M. Araújo, G. Hughes, E. Martínez-Meyer, 

R. Pearson, and P. Williams. 2007. Protected area needs in a changing climate. 

Frontiers in Ecology and Environment 5:131–138.

Harper, J. 1977. Population Biology of Plants. Academic Press, London.

Hastie T. J., and R. Tibshirani. 1990. Generalized Additive Models. Chapman and Hall, 

London.

Hastie, T., R. Tibshirani, and J. Friedman. 2001. The Elements of Statistical Learning: 
Data Mining, Inference, and Prediction. Springer, New York.

20peterson.281_314.indd   29220peterson.281_314.indd   292 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  2 9 3

Hay, S. I., J. Cox, D. J. Rogers, S. E. Randolph, D. I. Stern, G. D. Shanks, M. F. Myers, 

and R. W. Snow. 2002. Climate change and the resurgence of malaria in the East 

Africa highlands. Nature 415:905–909.

He, F., and K. J. Gaston. 2000. Occupancy-abundance relationships and sampling scales. 

Ecography 23:503–511.

Heikkinen, R. K., M. Luoto, M. B. Araújo, R. Virkkala, W. Thuiller, and M. T. Sykes. 

2006. Methods and uncertainties in bioclimatic envelope modelling under cli-

mate change. Progress in Physical Geography 30:751–777.

Heikkinen, R. K., M. Luoto, R. Virkkala, R. G. Pearson, and J.-H. Körber. 2007. Bi-

otic interactions improve prediction of boreal bird distributions at macro-scales. 

Global Ecology and Biogeography 16:754–763.

Hernandez, P. A., C. H. Graham, L. L. Master, and D. L. Albert. 2006. The effect of 

sample size and species characteristics on performance of different species dis-

tribution modeling methods. Ecography 29:773–785.

Hewitt, G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405:907–913.

Heyer, W. R., J. Coddington, W. J. Kress, P. Acevedo, D. Cole, T. L. Erwin, B. J. Meg-

gers, M. G. Pogue, R. W. Thorington, R. P. Vari, M. J. Weitzman, and S. H. 

Weitzman. 1999. Amazonian biotic diversity and conservation decisions. Ciência 

e Cultura 51:372–385.

Hickerson, M. J., B. C. Carstens, J. Cavender-Bares, K. A. Crandall, C. H. Graham, 

J. B. Johnson, L. Rissler, P. F. Victoriano, and A. D. Yoder. 2010. Phylogeogra-

phy’s past, present, and future: 10 years after Avise, 2000. Molecular Phyloge-

netics and Evolution 54:291–301.

Hickling, R., D. B. Roy, J. K. Hill, R. Fox, and C. D. Thomas. 2006. The distributions 

of a wide range of taxonomic groups are expanding polewards. Global Change 

Biology 12:450–455.

Hidalgo-Mihart, M. G., L. Cantú-Salazar, A. González-Romero, and C. A. López-

González. 2004. Historical and present distribution of coyote (Canis latrans) in 

Mexico and Central America. Journal of Biogeography 31:2025–2038.

Higgins, S. I., D. M. Richardson, R. M. Cowling, and T. H. Trinder-Smith. 1999. Pre-

dicting the landscape-scale distribution of alien plants and their threat to plant 

diversity. Conservation Biology 13:303–313.

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high 

resolution interpolated climate surfaces for global land areas. International Jour-

nal of Climatology 25:1965–1978.

Hijmans, R. J., L. Guarino, M. Cruz, and E. Rojas. 2001. Computer tools for spatial 

analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genetic Resources 

Newsletter 127:15–19.

Hilbert, D. W., and B. Ostendorf. 2001. The utility of artifi cial neural networks for 

modelling the distribution of vegetation in past, present and future climates. Eco-

logical Modelling 146:311–327.

Hinojosa-Díaz, I. A., O. Yáñez-Ordóñez, G. Chen, and A. T. Peterson. 2005. The North 

American invasion of the Giant Resin Bee (Hymenoptera: Megachilidae). Jour-

nal of Hymenoptera Research 14:69–77.

Hinsinger, P., C. Plassard, C. Tang, and B. Jaillard. 2003. Origins of root-mediated pH 

changes in the rhizosphere and their responses to environmental constraints: A 

review. Plant and Soil 248:43–59.

20peterson.281_314.indd   29320peterson.281_314.indd   293 6/8/11   8:56 PM6/8/11   8:56 PM



2 9 4  B I B L I O G R A P H Y

Hirzel, A. H., J. Hausser, D. Chessel, and N. Perrin. 2002. Ecological-niche factor anal-

ysis: How to compute habitat-suitability maps without absence data. Ecology 

83:2027–2036.

Hirzel, A. H., and G. Le Lay. 2008. Habitat suitability modelling and niche theory. 

Journal of Applied Ecology 45:1372–1381.

Hoffmann, M. H. 2001. The distribution of Senecio vulgaris: Capacity of climatic range 

models for predicting adventitious ranges. Flora 196:395–403.

———. 2005. Evolution of the realized climatic niche in the genus Arabidopsis (Bras-

sicaceae). Evolution 59:1425–1436.

Holt, R. D. 1990. The microevolutionary consequences of climate change. Trends in 

Ecology and Evolution 5:311–315.

    ———. 1996a. Adaptive evolution in source-sink environments: Direct and indirect 

effects of density-dependence on niche evolution. Oikos 75:182–192.

———. 1996b. Demographic constraints in evolution: Towards unifying the evolutionary 

theories of senescence and niche conservatism. Evolutionary Ecology 10:1–11.

———. 2003. On the evolutionary ecology of species’ ranges. Evolutionary Ecology 

Research 5:159–178.

———. 2009. Bringing the Hutchinsonian niche into the 21st century: Ecological and 

evolutionary perspectives. Proceedings of the National Academy of Sciences USA 

106:19659–19665.

Holt, R. D., and M. S. Gaines. 1992. Analysis of adaptation in heterogeneous land-

scapes: Implications for the evolution of fundamental niches. Evolutionary Ecol-

ogy 6:433–447.

Holt, R. D., and R. Gomulkiewicz. 1996. The evolution of species’ niches: A population 

dynamic perspective. In Case Studies in Mathematical Modeling—Ecology, 
Physiology, and Cell Biology, H. G. Othmer, F. R. Adler, M. A. Lewis, and J. C. 

Dallon, editors, pp. 25–50. Prentice-Hall, Saddle River, NJ.

Holt, R. D., and T. H. Keitt. 2000. Alternative causes for range limits: A metapopulation 

perspective. Ecology Letters 3:41–47.

Holt, R. D., T. H. Keitt, M. A. Lewis, B. A. Maurer, and M. L. Taper. 2005. Theoretical 

models of species’ borders: Single species approaches. Oikos 108:18–27.

Holt, R. D., J. H. Lawton, J. K. Gaston, and T. M. Blackburn. 1997. On the relation-

ship between range size and local abundances: Back to the basics. Oikos 78:183–

190.

Honig, M. A., R. M. Cowling, and D. M. Richardson. 1992. The invasive potential of 

Australian banksias in South-African fynbos—A comparison of the reproductive 

potential of Banksia ericifolia and Leucadendron laureolum. Australian Journal 

of Ecology 17:305–314.

Hooper, H. L., R. Connon, A. Callaghan, G. Fryer, S. Yarwood-Buchanan, J. Biggs, S. 

J. Maund, T. H. Hutchinson, and R. M. Sibly. 2008. The ecological niche of 

Daphnia magna characterized using population growth rate. Ecology 89:1015–

1022.

Howell, S.N.G., and S. Webb. 1995. A Guide to the Birds of Mexico and Northern Cen-
tral America. Oxford University Press, Oxford, UK.

Howells, O., and G. Edwards-Jones. 1997. A feasibility study of reintroducing wild 

boar Sus scrofa to Scotland: Are existing woodlands large enough to support 

minimum viable populations. Biological Conservation 81:77–89.

20peterson.281_314.indd   29420peterson.281_314.indd   294 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  2 9 5

Huisman, J., and F. J. Weissing. 2001. Fundamental unpredictability in multispecies 

competition. American Naturalist 157:488–494.

Hunter, P. R. 2003. Climate change and waterborne and vector-borne disease. Journal 

of Applied Microbiology 94:37S–46S.

Huntley, B., P. M. Berry, W. Cramer, and A. P. McDonald. 1995. Modelling present and 

potential future ranges of some European higher plants using climate response 

surfaces. Journal of Biogeography 22:967–1001.

Huntley, B., Y. C. Collingham, S. G. Willis, and R. E. Green. 2008. Potential impacts of 

climatic change on European breeding birds. PLoS ONE 3:e1439.

Huntley, B., R. E. Green, Y. C. Collingham, J. K. Hill, S. G. Willis, P. J. Bartlein, 

W. Cramer, W.J.M. Hagermeijer, and C. J. Thomas. 2004. The performance of 

models relating species geographic distributions to climate is independent of tro-

phic level. Ecology Letters 7:417–426.

Hurlbert, A. H., and W. Jetz. 2007. Species richness, hotspots, and the scale dependence 

of range maps in ecology and conservation. Proceedings of the National Acad-

emy of Sciences 104:13384–13389.

Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quan-

titative Biology 22:415–427.

———. 1978. An Introduction to Population Ecology. Yale University Press, New 

Haven, CT.

ICZN. 1999. International Code of Zoological Nomenclature, 4th ed.; http://www.iczn

.org/iczn/index.jsp. International Commission on Zoological Nomenclature, 

London.

Iguchi, K., K. Matsuura, K. McNyset, A. T. Peterson, R. Scachetti-Pereira, K. A. Pow-

ers, D. A. Vieglais, E. O. Wiley, and T. Yodo. 2004. Predicting invasions of North 

American basses in Japan using native range data and a genetic algorithm. Trans-

actions of the American Fisheries Society 133:845–854.

INPE. 2009. Instituto Nacional de Pesquisas Espaciais; http://www.inpe.br. Ministério 

da Ciéncia y Tecnología, São José dos Campos, São Paulo.

IPCC. 2007. Climate Change 2007: The Physical Science Basis. S. Solomon, D. Qin, 

M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller 

editors. Cambridge University Press, Cambridge, UK.

———. 2009. The IPCC Data Distribution Centre; http://www.ipcc-data.org. Intergov-

ernmental Panel on Climate Change. Geneva, Switzerland.

Iverson, L. R., and A. M. Prasad. 1998. Predicting abundance of 80 tree species follow-

ing climate change in the eastern United States. Ecological Monographs 68:

465–485.

Jackson, S. T., and J. T. Overpeck. 2000. Responses of plant populations and communi-

ties to environmental changes of the late Quaternary. Paleobiology 26:194–220.

Jakob, S. S., A. Ihlow, and F. R. Blattner. 2007. Combined ecological niche modelling 

and molecular phylogeography revealed the evolutionary history of Hordeum 
marinum (Poaceae)—Niche differentiation, loss of genetic diversity, and specia-

tion in Mediterranean Quaternary refugia. Molecular Ecology 16:1713–1727.

Jakob, S. S., E. Martínez-Meyer, and F. R. Blattner. 2009. Phylogeographic analyses 

and paleodistribution modeling indicates Pleistocene in situ survival of Hordeum 
species (Poaceae) in southern Patagonia without genetic or spatial restriction. 

Molecular Biology and Evolution 26:907–923.

20peterson.281_314.indd   29520peterson.281_314.indd   295 6/8/11   8:56 PM6/8/11   8:56 PM



2 9 6  B I B L I O G R A P H Y

James, F. C. 1971. Ordinations of habitat relationships among breeding birds. The Wil-

son Bulletin 83:215–236.

James, F. C., R. F. Johnston, N. O. Wamer, G. J. Niemi, and W. J. Boecklen. 1984. The 

Grinnellian niche of the Wood Thrush. American Naturalist 124:17–47.

Jarvis, A., K. Williams, D. Williams, L. Guarino, P. J. Caballero, and G. Mottram. 2005. 

Use of GIS for optimizing a collecting mission for a rare wild pepper (Capsicum 
fl exuosum Sendtn.) in Paraguay. Genetic Resources and Crop Evolution 

52:671–682.

Jiménez-Valverde, A., N. Barve, A. Lira-Noriega, S. P. Maher, Y. Nakazawa, M. Papes̨, 

J. Soberón, J. Sukumaran, and A. T. Peterson. 2010. Dominant climate infl uences 

on North American bird distributions. Global Ecology and Biogeography 20:

114–118.

Jiménez-Valverde, A., J. M. Lobo, and J. Hortal. 2008. Not as good as they seem: The 

importance of concepts in species distribution modelling. Diversity and Distribu-

tions 14:885–890.

Jiménez-Valverde, A., A. T. Peterson, J. Soberón, J. Overton, P. Aragón, P., and J. M. 

Lobo. 2011. Use of niche models in invasive species risk assessments. Biological 

Invasions: doi:10.1007/s10530-011-9963-4.

Johnson, K. P., and S. M. Lanyon. 1999. Molecular systematics of the grackles and 

 allies, and the effect of additional sequence (cyt b and ND2). Auk 116:759–768.

Jones, P. G., and A. Gladkov. 1999. FloraMap: A computer tool for predicting the dis-

tribution of plants and other organisms in the wild. Centro Internacional de Ag-

ricultura Tropical, Cali, Colombia.

Kadmon, R., O. Farber, and A. Danin. 2004. Effect of roadside bias on the accuracy of 

predictive maps produced by bioclimatic models. Ecological Applications 14:

401–413.

Kambhampati, S., and A. T. Peterson. 2007. Ecological niche conservation and differ-

entiation in the wood-feeding cockroaches, Cryptocercus, in the United States. 

Biological Journal of the Linnaean Society 90:457–466.

Kawecki, T. J. 1995. Demography of source-sink populations and the evolution of eco-

logical niches. Evolutionary Ecology 9:38–44.

Kawecki, T. J., and S. C. Stearns. 1993. The evolution of life histories in spatially het-

erogeneous environments: Optimal reaction norms revisited. Evolutionary Ecol-

ogy 7:155–174.

Kearney, M. 2006. Habitat, environment, and niche: What are we modelling? Oikos 

115:186–191.

Kearney, M., and W. P. Porter. 2004. Mapping the fundamental niche: Physiology, cli-

mate, and the distribution of a nocturnal lizard. Ecology 85:3119–3131.

Keating, K. A., and S. Cherry. 2004. Use and interpretation of logistic regression in 

habitat-selection studies. Journal of Wildlife Management 68:774–789.

Keith, D. A., H. R. Akçakaya, W. Thuiller, G. F. Midgley, R. G. Pearson, S. J. Phillips, 

H. M. Regan, M. B. Araújo, and T. G. Rebelo. 2008. Predicting extinction risks 

under climate change: Coupling stochastic population models with dynamic bio-

climatic habitat models. Biology Letters 4:560–563.

Keitt, T. H., O. N. Bjørnstad, P. M. Dixon, and S. Citron-Pousty. 2002. Accounting for 

spatial pattern when modeling organism-environment interactions. Ecography 

25:616–625.

20peterson.281_314.indd   29620peterson.281_314.indd   296 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  2 9 7

Kilpatrick, A. M., A. A. Chmura, D. W. Gibbons, R. C. Fleischer, P. P. Marra, and 

P. Daszak. 2006. Predicting the global spread of H5N1 avian infl uenza. Proceed-

ings of the National Academy of Sciences USA 103:19368–19373.

Kirkpatrick, M., and N. H. Barton. 1997. Evolution of a species’ range. American Natu-

ralist 150:1–23.

Kitchener, A. 1991. The Natural History of the Wild Cats. Comstock Press, Ithaca, NY.

Kitron, U. 1998. Landscape ecology and epidemiology of vector-borne diseases: Tools 

for spatial analysis. Journal of Medical Entomology 35:435–445.

Kluza, D. A., D. A. Vieglais, J. K. Andreasen, and A. T. Peterson. 2007. Sudden oak 

death: Geographic risk estimates and predictions of origins. Plant Pathology 56:

580–587.

Knouft, J. H., J. B. Losos, R. E. Glor, and J. J. Kolbe. 2006. Phylogenetic analysis of the 

evolution of the niche in lizards of the Anolis sagrei group. Ecology 87:S29–

S38.

Knowles, L. L., B. C. Carstens, and M. L. Keat. 2007. Coupling genetic and ecological-

niche models to examine how past population distributions contribute to diver-

gence. Current Biology 17:940–946.

Koleff, P., M. Tambutti, I. J. March, R. Esquivel, C. Cantú, and A. Lira-Noriega. 2009. 

Identifi cación de prioridades y análisis de vacíos y omisiones en la conservación 

de la biodiversidad de México. Pages 651–718 in CONABIO, editor. In Capital 
Natural de México, Volumen II. Estado de Conservación y Tendencias de Cam-
bio, CONABIO, J. Soberón, G. Halffter, and J. Llorente, editors, pp. 651–718. 

Comisión Nacional para el Uso y Conocimiento de la Biodiversidad, Mexico 

City.

Komar, N. 2003. West Nile virus: Epidemiology and ecology in North America. Ad-

vances in Virus Research 61:185–234.

Koplin, J. R., and R. S. Hoffmann. 1968. Habitat overlap and competitive exclusion in 

voles (Microtus). American Midland Naturalist 80:494–507.

Körner, C. 2007. The use of “altitude” in ecological research. Trends in Ecology and 

Evolution 22:569–574.

Kovats, R. S., D. Campbell-Lendrum, A. J. McMichael, A. Woodward, and J. S. Cox. 

2001. Early effects of climate change: Do they include changes in vector-borne 

disease? Philosophical Transactions of the Royal Society of London B 356:

1057–1068.

Kozak, K. H., and J. J. Wiens. 2006. Does niche conservatism promote speciation? A 

case study in North American salamanders. Evolution 60:2604–2621.

Kremen, C., A. Cameron, A. Moilanen, S. J. Phillips, C. D. Thomas, H. Beentje, 

J. Dransfi eld, B. L. Fisher, F. Glaw, T. C. Good, G. J. Harper, R. J. Hijmans, D. C. 

Lees, E. Louis, Jr., R. A. Nussbaum, C. J. Raxworthy, A. Razafi mpahanana, G. E. 

Schatz, M. Vences, D. R. Vieites, P. C. Wright, and M. L. Zjhra. 2008. Aligning 

conservation priorities across taxa in Madagascar with high-resolution planning 

tools. Science 320:222–226.

Krishtalka, L., and P. S. Humphrey. 2000. Can natural history museums capture the fu-

ture? BioScience 50:611–617.

Kutz, S. J., E. P. Hoberg, L. Polley, and E. J. Jenkins. 2005. Global warming is changing 

the dynamics of Arctic host-parasite systems. Proceedings of the Royal Society 

B 272:2571–2576.

20peterson.281_314.indd   29720peterson.281_314.indd   297 6/8/11   8:56 PM6/8/11   8:56 PM



2 9 8  B I B L I O G R A P H Y

Lande, R. 1986. The dynamics of peak shifts and the pattern of morphological evolu-

tion. Paleobiology 12:343–354.

———. 1988. Genetics and demography in biological conservation. Science 241:

1455–1460.

Lande, R., S. Engen, and B.-E. Saether. 2003. Stochastic Population Dynamics in Ecol-
ogy and Conservation. Oxford University Press, New York.

Lanyon, S. M. 1994. Polyphyly of the blackbird genus Agelaius and the importance of 

assumptions of monophyly in comparative studies. Evolution 48:679–693.

Lanyon, S. M., and K. E. Omland. 1999. A molecular phylogeny of the blackbirds 

(Icteridae): Five lineages revealed by cytochrome-b sequence data. Auk 116:

629–639.

Larson, G. 1982. Great Moments in Evolution [Visual image]. The Far Side. Far Works, 

Inc., Los Angeles.

Latimer, A. M., S. Wu, A. E. Gelfand, and J. A. Silander, Jr. 2006. Building statistical 

models to analyze species distributions. Ecological Applications 16:33–50.

Lawson, A. B., A. Biggeri, D. Böhning, E. Lesaffre, J.-F. Viel, R. Bertollini, editors. 

1999. Disease Mapping and Risk Assessment for Public Health. John Wiley & 

Sons, New York.

Lawton, J. H. 2000. Concluding remarks: A review of some open questions. In Eco-
logical Consequences of Heterogeneity, M. J. Hutchings, E. A. John, and A. J. A. 

Stewart, editors, pp. 401–424. Cambridge University Press, Cambridge, UK.

Leathwick, J. R., and M. P. Austin. 2001. Competitive interactions between tree species 

in New Zealand’s old-growth indigenous forest. Ecology 82:2560–2573.

Lee, C. E. 2002. Evolutionary genetics of invasive species. Trends in Ecology and Evo-

lution 17:386–391.

Lee, C. E., J. L. Remfert, and Y.-M. Chang. 2007. Response to selection and evolvabil-

ity of invasive populations. Genetica 129:179–192.

Lee, J., and D. Stucky. 1998. On applying viewshed analysis for determining least-cost 

paths on digital elevation models. International Journal of Geographical Infor-

mation Science 12:891–905.

Legendre, P., and L. Legendre. 1998. Numerical Ecology, 2nd English ed. Elsevier, 

Amsterdam.

Leibold, M. A. 1995. The niche concept revisited: Mechanistic models and community 

context. Ecology 76:1371–1382.

Levine, R. S., A. T. Peterson, and M. Q. Benedict. 2004. Geographic and ecologic dis-

tributions of the Anopheles gambiae complex predicted using a genetic algo-

rithm. American Journal of Tropical Medicine and Hygiene 70:105–109.

Levine, R. S., A. T. Peterson, K. L. Yorita, D. Carroll, I. K. Damon, and M. G. Reynolds. 

2007. Ecological niche and geographic distribution of human monkeypox in Af-

rica. PLoS ONE 2:e176.

Levins, R. 1968. Evolution in Changing Environments. Princeton University Press, 

Prince ton, NJ.

Lim, B. K., A. T. Peterson, and M. D. Engstrom. 2002. Robustness of ecological niche 

modeling algorithms for mammals in Guyana. Biodiversity and Conservation 

11:1237–1246.

Lindenmayer, D. B., H. A. Nix, J. P. McMahon, M. F. Hutchinson, and M. T. Tanton. 

1991. The conservation of Leadbeater’s possum, Gymnobelideus leadbeateri 

20peterson.281_314.indd   29820peterson.281_314.indd   298 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  2 9 9

(McCoy): A case study of the use of bioclimatic modelling. Journal of Biogeog-

raphy 18:371–383.

Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of 

occurrence in the prediction of species distributions. Ecography 28:385–393.

Llorente-Bousquets, J. E., L. Oñate-Ocaña, A. Luis-Martínez, and I. Vargas-Fernández. 

1997. Papilionidae y Pieridae de México: Distribución Geográfi ca e Ilustración. 

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico City.

Lobo, J. M., A. Jiménez-Valverde, and R. Real. 2007. AUC: A misleading measure of 

the performance of predictive distribution models. Global Ecology and Biogeog-

raphy 17:145–151.

Loiselle, B. A., C. A. Howell, C. H. Graham, J. M. Goerck, T. Brooks, K. G. Smith, and 

P. H. Williams. 2003. Avoiding pitfalls of using species distribution models in 

conservation planning. Conservation Biology 17:1591–1600.

López-Cárdenas, J., F. E. González-Bravo, P. M. Salazar-Schettino, J. C. Gallaga- 

Solórzano, E. Ramírez-Barba, J. Martínez-Méndez, V. Sánchez-Cordero, A. T. 

Peterson, and J. M. Ramsey. 2005. Fine-scale predictions of distributions of Cha-

gas disease vectors in the state of Guanajuato, Mexico. Journal of Medical Ento-

mology 42:1068–1081.

López-Darias, M., and J. M. Lobo. 2008. Factors affecting invasive species abundance: 

The Barbary Ground Squirrel on Fuerteventura Island, Spain. Zoological Studies 

47:268–281.

 MacArthur, R. H. 1972. Geographical Ecology: Patterns in the Distribution of Species. 

Harper & Row, New York.

MacArthur, R. H., and E. O. Wilson. 1967. The Theory of Island Biogeography. Prince-

ton University Press, Princeton, NJ.

Mace, G. M., N. J. Collar, K. J. Gaston, C. Hilton-Taylor, H. R. Akçakaya, N. Leader-

Williams, E. J. Milner-Gulland, and S. N. Stuart. 2008. Quantifi cation of extinc-

tion risk: IUCN’s system for classifying threatened species. Conservation Biology 

22:1424–1442.

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. A. Royle, and C. A. 

Langtimm. 2002. Estimating site occupancy rates when detection probabilities 

are less than one. Ecology 83:2248–2255.

Mackey, B. G., and D. B. Lindenmayer. 2001. Towards a hierarchical framework for model-

ling the spatial distribution of animals. Journal of Biogeography 28:1147–1166.

Maguire, B., Jr. 1973. Niche response structure and the analytical potentials of its rela-

tionship to the habitat. American Naturalist 107:213–246.

Manel, S., H. C. Williams, and S. J. Ormerod. 2001. Evaluating presences-absence 

models in ecology: The need to account for prevalence. Journal of Applied Ecol-

ogy 38:921–931.

Manning, A. D., J. Fischer, A. Felton, B. Newell, W. Steffen, and D. B. Lindenmayer. 

2009. Landscape fl uidity: A unifying perspective for understanding and adapting 

to global change. Journal of Biogeography 36:193–199.

Margules, C. R., and R. L. Pressey. 2000. Systematic conservation planning. Nature 

405:243–253.

Marmion, M., M. Parviainen, M. Luoto, R. K. Heikkinen, and W. Thuiller. 2009. Evalu-

ation of consensus methods in predictive species distribution modelling. Diver-

sity and Distributions 15:59–69.

20peterson.281_314.indd   29920peterson.281_314.indd   299 6/8/11   8:56 PM6/8/11   8:56 PM



3 0 0  B I B L I O G R A P H Y

Martin, W. K. 1996. The current and potential distribution of the common myna Acri-
dotheres tristis in Australia. Emu 96:166–173.

Martínez-Gordillo, D., O. Rojas-Soto, and A. Espinosa de los Monteros. 2010. Eco-

logical niche modelling as an exploratory tool for identifying species limits: An 

example based on Mexican muroid rodents. Journal of Evolutionary Biology 

23:259–270.

Martínez-Meyer, E., and A. T. Peterson. 2006. Conservatism of ecological niche char-

acteristics in North American plant species over the Pleistocene-to-Recent transi-

tion. Journal of Biogeography 33:1779–1789.

Martínez-Meyer, E., A. T. Peterson, and W. W. Hargrove. 2004a. Ecological niches as 

stable distributional constraints on mammal species, with implications for Pleis-

tocene extinctions and climate change projections for biodiversity. Global Ecol-

ogy and Biogeography 13:305–314.

Martínez-Meyer, E., A. T. Peterson, and A. G. Navarro-Sigüenza. 2004b. Evolution of 

seasonal ecological niches in the Passerina buntings (Aves: Cardinalidae). Pro-

ceedings of the Royal Society B 271:1151–1157.

Martínez-Meyer, E., A. T. Peterson, J. I. Servín, and L. F. Kiff. 2006. Ecological niche 

modelling and prioritizing areas for species reintroductions. Oryx 40:411–418.

Martins, E. P. 2000. Adaptation and the comparative method. Trends in Ecology and 

Evolution 15:296–299.

Maurer, B. A., and M. L. Taper. 2002. Connecting geographical distributions with popu-

lation processes. Ecology Letters 5:223–231.

McClean, C. J., J. C. Lovett, W. Küper, L. Hannah, J. H. Sommer, W. Barthlott, M. Ter-

mansen, G. F. Smith, S. Tokumine, and J.R.D. Taplin. 2005. African plant diver-

sity and climate change. Annals of the Missouri Botanical Garden 92:139–152.

McCormack, J. E., A. J. Zellmer, and L. L. Knowles. 2010. Does niche divergence ac-

company allopatric divergence in Aphelocoma jays as predicted under ecological 

speciation? Insights from tests with niche models. Evolution 64:1231–1244.

McGill, B. J., B. J. Enquist, E. Weiher, and M. Westoby. 2006. Rebuilding community 

ecology from functional traits. Trends in Ecology and Evolution 21:178–185.

McGill, B. J., E. A. Hadley, and B. A. Maurer. 2005. Community inertia of Quaternary 

small mammal assemblages in North America. Proceedings of the National Acad-

emy of Sciences USA 102:16701–16706.

McNyset, K. M. 2005. Use of ecological niche modelling to predict distributions of 

freshwater fi sh species in Kansas. Ecology of Freshwater Fish 14:243–255.

Medley, K. A. 2010. Niche shifts during the global invasion of the Asian tiger mosquito, 

Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. 

Global Ecology and Biogeography 19:122–133.

Meszéna, G., M. Gyllenberg, L. Pásztor, and J.A.J. Metz. 2006. Competitive exclu-

sion and limiting similarity: A unifi ed theory. Theoretical Population Biology 69:

68–87.

Midgley, G. F., L. Hannah, D. Millar, M. C. Rutherford, and L. W. Powrie. 2002. As-

sessing the vulnerability of species richness to anthropogenic climate change in 

a biodiversity hotspot. Global Ecology and Biogeography 11:445–451.

Midgley, G. F., L. Hannah, D. Millar, W. Thuiller, and A. Booth. 2003. Developing re-

gional and species-level assessments of climate change impacts on biodiversity 

in the Cape Floristic Region. Biological Conservation 112:87–97.

20peterson.281_314.indd   30020peterson.281_314.indd   300 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  3 0 1

Mittermeier, R. A., N. Myers, J. B. Thomsen, G.A.B. da Fonseca, and S. Olivieri. 1998. 

Biodiversity hotspots and major tropical wilderness areas: Approaches to setting 

conservation priorities. Conservation Biology 12:516–520.

Moffett, A., N. Shackelford, and S. Sarkar. 2007. Malaria in Africa: Vector species’ 

niche models and relative risk maps. PLoS ONE 2:e824.

Mohamed, K. I., M. Papes̨, R. Williams, B. W. Benz, and A. T. Peterson. 2006. Global 

invasive potential of 10 parasitic witchweeds and related Orobanchaceae. AMBIO 

35:281–288.

Moilanen, A. 2005. Reserve selection using nonlinear species distribution models. 

American Naturalist 165:695–706.

Molofsky, J., R. Durrett, J. Dushoff, D. Griffeath, and S. Levin. 1999. Local frequency 

dependence and global coexistence. Theoretical Population Biology 55:270–282.

Moreno, C. E., and G. Halffter. 2000. Assessing the completeness of bat biodiversity 

inventories using species accumulation curves. Journal of Applied Ecology 37:

149–158.

Muñ oz, M. de S., R. De Giovanni, M. de Siqueira, T. Sutton, P. Brewer, R. Pereira, 

D. Canhos, and V. Canhos. 2009. OpenModeller: A generic approach to spe-

cies’  potential distribution modelling. GeoInformatica (online): doi:10.1007/

s10707-009-0090-7.

Myers, N. 1979. The Sinking Ark: A New Look at the Problem of Disappearing Species. 

Pergamon Press, Oxford, UK.

Myers, N., R. A. Mittermeier, C. G. Mittermeier, G.A.B. da Fonseca, and J. Kent. 2000. 

Biodiversity hotspots for conservation priorities. Nature 403:853–858.

Myneni, R. B., F. G. Hall, P. J. Sellers, and A. L. Marshak. 1995. The interpretation of 

spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sens-

ing 33:481–486.

Nakazawa, Y., R. Williams, A. T. Peterson, P. Mead, E. Staples, and K. L. Gage. 2007. 

Climate change effects on plague and tularemia in the United States. Vector Borne 

and Zoonotic Diseases 7:529–540.

NAS. 2002. Predicting Invasions of Nonindigenous Plants and Plant Pests. National 

Academy Press, Washington, DC.

Natori, Y., and W. P. Porter. 2007. Model of Japanese serow (Capricornis crispus) ener-

getics predicts distribution on Honshu, Japan. Ecological Applications 17:1441–

1459.

Navarro-Sigüenza, A. G., A. T. Peterson, and A. Gordillo-Martínez. 2006. Atlas de las 

Distribuciones de las Aves de México, unpublished database. Mexico City.

New, M., M. Hulme, and P. D. Jones. 1997. A 1961–1990 Mean Monthly Climatology 
of Global Land Areas. Climatic Research Unit, University of East Anglia, Nor-

wich, UK.

Nix, H. A. 1986. A biogeographic analysis of Australian Elapid Snakes. In Atlas of Ela-
pid Snakes, R. Longmore, editor, pp. 4–15. Australian Government Publishing 

Service, Canberra.

Nogués-Bravo, D. 2009. Predicting the past distribution of species climatic niches. 

Global Ecology and Biogeography 18:521–531.

Nogués-Bravo, D., M. B. Araújo, T. Romdal, and C. Rahbek. 2008a. Scale effects 

and human impact on the elevational species richness gradients. Nature 453:

216–219.

20peterson.281_314.indd   30120peterson.281_314.indd   301 6/8/11   8:56 PM6/8/11   8:56 PM



3 0 2  B I B L I O G R A P H Y

Nogués-Bravo, D., J. Rodriguez, J. Hortal, P. Batra, and M. B. Araújo. 2008b. Cli-

mate change, humans, and the extinction of the woolly mammoth. PLoS Biology 

6:e79.

NRSC. 2009. National Remote Sensing Centre; http://www.nrsc.gov.in/. Department of 

Space, Balanagar, Hyderabad, India.

Nyári, Á., C. Ryall, and A. T. Peterson. 2006. Global invasive potential of the House 

Crow (Corvus splendens) based on ecological niche modelling. Journal of Avian 

Biology 37:306–311.

Odling-Smee, F. J., K. N. Laland, and M. W. Feldman. 2003. Niche Construction: The 
Neglected Process in Evolution. Princeton University Press, Princeton, NJ.

Omland, K. E., and S. M. Lanyon. 2000. Reconstructing plumage evolution in orioles 

(Icterus): Repeated convergence and reversal in patterns. Evolution 54:2119–

2133.

Openshaw, S., and P. J. Taylor. 1981. The modifi able areal unit problem. In Quantitative 
Geography: A British View, N. Wrigley and R. J. Bennett, editors, pp. 60–69. 

Routledge & Kegan Paul, Ltd., London.

Orme, C.D.L., R. G. Davies, V. A. Olson, G. H. Thomas, T.-S. Ding, P. C. Rasmussen, 

R. S. Ridgely, A. J. Stattersfi eld, P. M. Bennett, I.P.F. Owens, T. M. Blackburn, 

and K. J. Gaston. 2006. Global patterns of geographic range size in birds. PLoS 

Biology 4:e208.

Ortega-Huerta, M. A. and., and A. T. Peterson. 2004. Modelling spatial patterns of bio-

diversity for conservation prioritization in north-eastern Mexico. Diversity and 

Distributions 10:39–54.

Ortiz-Martínez, T., V. Rico-Gray, and E. Martínez-Meyer. 2008. Predicted and verifi ed 

distributions of Ateles geoffroyi and Alouatta palliata in Oaxaca, Mexico. Pri-

mates 49:186–194.

Ortíz-Pulido, R., A. T. Peterson, M. B. Robbins, R. Díaz, A. G. Navarro-Sigüenza, and 

G. Escalona-Segura. 2002. The Mexican Sheartail (Doricha eliza): Morphology, 

behavior, distribution, and status. Wilson Bulletin 114:153–160.

Padian, K., and L. M. Chiappe. 1998. The origin and early evolution of birds. Biological 

Reviews 73:1–42.

Pagel, M., A. Meade, and D. Barker. 2004. Bayesian estimation of ancestral character 

states on phylogenies. Systematic Biology 53:673–684.

Panetta, F. D., and J. Dodd. 1987. Bioclimatic prediction of the potential distribution of 

skeleton weed Chondrilla juncea L. in Western Australia. Journal of the Austra-

lian Institute of Agricultural Science 53:11–16.

Papes̨, M., and A. T. Peterson. 2003. Predicting the potential invasive distribution for 

Eupatorium adenophorum Spreng. in China. Journal of Wuhan Botanical Re-

search 21:137–142.

Papes̨, M., R. Tupayachi, P. Martínez, A. T. Peterson, and G.V.N. Powell. 2010. Using 

hyperspectral satellite imagery for regional inventories: A test with tropical 

emergent trees in the Amazon Basin. Journal of Vegetation Science 21:342–

354.

Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. 

Annual Review of Ecology, Evolution, and Systematics 37:637–669.

Patten, M. A. 2004. Correlates of species richness in North American bat families. Jour-

nal of Biogeography 31:975–985.

20peterson.281_314.indd   30220peterson.281_314.indd   302 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  3 0 3

Patterson, B. D. 1999. Contingency and determinism in mammalian biogeography: The 

role of history. Journal of Mammalogy 80:345–360.

Pearce, J. L., and M. S. Boyce. 2006. Modelling distribution and abundance with pres-

ence-only data. Journal of Applied Ecology 43:405–412.

Pearce, J. L., and D. Lindenmayer. 1998. Bioclimatic analysis to enhance reintroduction 

biology of the endangered helmeted honeyeater (Lichenostomus melanops cas-
sidix) in southeastern Australia. Restoration Ecology 6:238–243.

Pearson, R. G. 2007. Species’ Distribution Modeling for Conservation Educators and 
Practitioners: Synthesis. American Museum of Natural History, New York. 

Available at http://ncep.amnh.org.

Pearson, R. G., and T. P. Dawson. 2003. Predicting the impacts of climate change on the 

distribution of species: Are bioclimate envelope models useful? Global Ecology 

and Biogeography 12:361–371.

———. 2004. Bioclimate envelope models: What they detect and what they hide— 

Response to Hampe (2004). Global Ecology and Biogeography 13:471–473.

———. 2005. Long-distance plant dispersal and habitat fragmentation: Identifying 

conservation targets for spatial landscape planning under climate change. Bio-

logical Conservation 123:389–401.

Pearson, R. G., T. P. Dawson, P. M. Berry, and P. A. Harrison. 2002. SPECIES: A spatial 

evaluation of climate impact on the envelope of species. Ecological Modelling 

154:289–300.

Pearson, R. G., C. J. Raxworthy, M. Nakamura, and A. T. Peterson. 2007. Predicting 

species’ distributions from small numbers of occurrence records: A test case using 

cryptic geckos in Madagascar. Journal of Biogeography 34:102–117.

Pearson, R. G., W. Thuiller, M. B. Araújo, E. Martínez-Meyer, L. Brotons, C. McClean, 

L. Miles, P. Segurado, T. P. Dawson, and D. C. Lees. 2006. Model-based uncer-

tainty in species’ range prediction. Journal of Biogeography 33:1704–1711.

Peters, R. L., and J. P. Myers. 1991–1992. Preserving biodiversity in a changing cli-

mate. Issues in Science and Technology 8:66–72.

Peterson, A. T. 2001. Predicting species’ geographic distributions based on ecological 

niche modeling. Condor 103:599–605.

———. 2003a. Predicting the geography of species’ invasions via ecological niche 

modeling. Quarterly Review of Biology 78:419–433.

———. 2003b. Projected climate change effects on Rocky Mountain and Great Plains 

birds: Generalities of biodiversity consequences. Global Change Biology 9:647–

655.

———. 2005a. Kansas Gap Analysis: The importance of validating distributional mod-

els before using them. Southwestern Naturalist 50:230–236.

———. 2005b. Predicting potential geographic distributions of invading species. Cur-

rent Science 89:9.

———. 2006a. Ecological niche modeling and spatial patterns of disease transmission. 

Emerging Infectious Diseases 12:1822–1826.

———. 2006b. Taxonomy is important in conservation: A preliminary reassessment of 

Philippine species-level bird taxonomy. Bird Conservation International 16:155–

173.

———. 2006c. Uses and requirements of ecological niche models and related distribu-

tional models. Biodiversity Informatics 3:59–72.

20peterson.281_314.indd   30320peterson.281_314.indd   303 6/8/11   8:56 PM6/8/11   8:56 PM



3 0 4  B I B L I O G R A P H Y

———. 2007a. Ecological niche modelling and understanding the geography of dis-

ease transmission. Veterinaria Italiana 43:393–400.

———. 2007b. Why not WhyWhere: The need for more complex models of simpler 

environmental spaces. Ecological Modelling 203:527–530.

———. 2008a. Biogeography of diseases: A framework for analysis. Naturwissen-

schaften 95:483–491.

———. 2008b. Improving methods for reporting spatial epidemiologic data. Emerging 

Infectious Diseases 14:1335–1336.

———. 2009. Shifting suitability for malaria vectors across Africa with warming cli-

mates. BMC Infectious Diseases 9:59; doi:10.1186/1471-2334-9-59.

———. 2011. Ecological niche conservatism: A time-structured review of evidence. 

Journal of Biogeography. In press; doi:10.1111/j.1365-2699.2010.02456.x.

Peterson, A. T., L. G. Ball, and K. P. Cohoon. 2002a. Predicting distributions of Mexi-

can birds using ecological niche modelling methods. Ibis 144:e27–e32.

Peterson, A. T., N. Barve, L. M. Bini, J. A. Diniz-Filho, A. Jiménez-Valverde, A. Lira-

Noriega, J. Lobo, S. Maher, P. de Marco, Jr., E. Martínez-Meyer, Y. Nakazawa, 

and J. Soberón. 2009a. The climate envelope may not be empty. Proceedings of 

the National Academy of Sciences USA 106:e47.

Peterson, A. T., J. T. Bauer, and J. N. Mills. 2004a. Ecological and geographic distribu-

tion of fi lovirus disease. Emerging Infectious Diseases 10:40–47.

Peterson, A. T., B. W. Benz, and M. Papes̨. 2007a. Highly pathogenic H5N1 avian infl u-

enza: Entry pathways into North America via bird migration. PLoS ONE 2:e261.

Peterson, A. T., D. S. Carroll, J. N. Mills, and K. M. Johnson. 2004b. Potential mam-

malian fi lovirus reservoirs. Emerging Infectious Diseases 10:2073–2081.

Peterson, A. T., and K. P. Cohoon. 1999. Sensitivity of distributional predictive algo-

rithms to geographic data completeness. Ecological Modelling 117:159–164.

Peterson, A. T., S. L. Egbert, V. Sánchez-Cordero, and K. P. Price. 2000. Geographic 

analysis of conservation priority: Endemic birds and mammals in Veracruz, Mex-

ico. Biological Conservation 93:85–94.

Peterson, A. T., and R. D. Holt. 2003. Niche differentiation in Mexican birds: Using 

point occurrences to detect ecological innovation. Ecology Letters 6:774–782.

Peterson, A. T., and D. A. Kluza. 2003. New distributional modelling approaches for 

gap analysis. Animal Conservation 6:47–54.

Peterson, A. T., R. R. Lash, D. S. Carroll, and K. M. Johnson. 2006a. Geographic poten-

tial for outbreaks of Marburg hemorrhagic fever. American Journal of Tropical 

Medicine and Hygiene 75:9–15.

Peterson, A. T., C. Martínez-Campos, Y. Nakazawa, and E. Martínez-Meyer. 2005a. 

Time-specifi c ecological niche modeling predicts spatial dynamics of vector in-

sects and human dengue cases. Transactions of the Royal Society of Tropical Med-

icine and Hygiene 99:647–655.

Peterson, A. T., and E. Martínez-Meyer. 2007. Geographic evaluation of conservation 

status of African forest squirrels (Sciuridae) considering land use change and 

climate change: The importance of point data. Biodiversity and Conservation 

16:3939–3950.

Peterson, A. T., E. Martínez-Meyer, C. González-Salazar, and P. W. Hall. 2004c. Mod-

eled climate change effects on distributions of Canadian butterfl y species. Cana-

dian Journal of Zoology 82:851–858.

20peterson.281_314.indd   30420peterson.281_314.indd   304 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  3 0 5

Peterson, A. T., and Y. Nakazawa. 2008. Environmental data sets matter in ecological 

niche modelling: An example with Solenopsis invicta and Solenopsis richteri. 
Global Ecology and Biogeography 17:135–144.

Peterson, A. T., and A. G. Navarro-Sigüenza. 2009. Making biodiversity discovery more 

effi cient: An exploratory test using Mexican birds. Zootaxa 2246:58–66.

Peterson, A. T., and Á. S. Nyári. 2007. Ecological niche conservatism and Pleistocene 

refugia in the Thrush-like Mourner, Schiffornis sp., in the Neotropics. Evolution 

62:173–183.

Peterson, A. T., M. A. Ortega-Huerta, J. Bartley, V. Sánchez-Cordero, J. Soberón, R. H. 

Buddemeier, and D.R.B. Stockwell. 2002b. Future projections for Mexican fau-

nas under global climate change scenarios. Nature 416:626–629.

Peterson, A. T., and M. Papes̨. 2007. Potential geographic distribution of the Bugun Lio-

cichla Liocichla bugunorum, a poorly known species from north-eastern India. 

Indian Birds 2:146–149.

Peterson, A. T., M. Papes̨, D. S. Carroll, H. Leirs, and K. M. Johnson. 2007b. Mammal 

taxa constituting potential coevolved reservoirs of fi loviruses. Journal of Mam-

malogy 88:1544–1554.

Peterson, A. T., M. Papes̨, and M. Eaton. 2007c. Transferability and model evaluation 

in ecological niche modeling: A comparison of GARP and Maxent. Ecography 

30:550–560.

Peterson, A. T., M. Papes̨, and D. A. Kluza. 2003a. Predicting the potential invasive 

distributions of four alien plant species in North America. Weed Science 51:

863–868.

Peterson, A. T., M. Papes̨, and J. Soberón. 2008a. Rethinking receiver operating charac-

teristic analysis applications in ecological niche modeling. Ecological Modelling 

213:63–72.

Peterson, A. T., R. S. Pereira, and V. F. Neves. 2004d. Using epidemiological survey 

data to infer geographic distributions of leishmania vector species. Revista da 

Sociedade Brasileira de Medicina Tropical 37:10–14.

Peterson, A. T., A. Robbins, R. Restifo, J. Howell, and R. Nasci. 2009b. Predictable 

ecology and geography of West Nile virus transmission in the central United 

States. Journal of Vector Ecology 33:342–352.

Peterson, A. T., and C. R. Robins. 2003. Using ecological-niche modeling to predict 

barred owl invasions with implications for spotted owl conservation. Conserva-

tion Biology 17:1161–1165.

Peterson, A. T., V. Sánchez-Cordero, C. B. Beard, and J. M. Ramsey. 2002c. Ecologic 

niche modeling and potential reservoirs for Chagas disease, Mexico. Emerging 

Infectious Diseases 8:662–667.

Peterson, A. T., V. Sánchez-Cordero, E. Martínez-Meyer, and A. G. Navarro-Sigüenza. 

2006b. Tracking population extirpations via melding ecological niche modeling 

with land-cover information. Ecological Modelling 195:229–236.

Peterson, A. T., V. Sánchez-Cordero, J. Soberón, J. Bartley, R. H. Buddemeier, and A. 

G. Navarro-Sigüenza. 2001. Effects of global climate change on geographic dis-

tributions of Mexican Cracidae. Ecological Modelling 144:21–30.

Peterson, A. T., R. Scachetti-Pereira, and D. A. Kluza. 2003b. Assessment of invasive 

potential of Homalodisca coagulata in western North America and South Amer-

ica. Biota Neotropica 3:1–7.

20peterson.281_314.indd   30520peterson.281_314.indd   305 6/8/11   8:56 PM6/8/11   8:56 PM



3 0 6  B I B L I O G R A P H Y

Peterson, A. T., and J. Shaw. 2003. Lutzomyia vectors for cutaneous leishmaniasis in 

southern Brazil: Ecological niche models, predicted geographic distributions, 

and climate change effects. International Journal of Parasitology 33:919–931.

Peterson, A. T., J. Soberón, and V. Sánchez-Cordero. 1999. Conservatism of ecological 

niches in evolutionary time. Science 285:1265–1267.

Peterson, A. T., A. Stewart, K. I. Mohamed, and M. B. Araújo. 2008b. Shifting global 

invasive potential of European plants with climate change. PLoS ONE 3:e2441.

Peterson, A. T., D.R.B. Stockwell, and D. A. Kluza. 2002d. Distributional prediction 

based on ecological niche modeling of primary occurrence data. In Predicting 
Species Occurrences: Issues of Accuracy and Scale, J. M. Scott, P. J. Heglund, 

and M. L. Morrison, editors, pp. 617–623. Island Press, Washington, DC.

Peterson, A. T., H. Tian, E. Martínez-Meyer, J. Soberón, V. Sánchez-Cordero, and 

B. Huntley. 2005b. Modeling distributional shifts of individual species and bi-

omes. In Climate Change and Biodiversity, T. E. Lovejoy and L. Hannah, editors, 

pp. 211–228. Yale University Press, New Haven, CT.

Peterson, A. T., and D. A. Vieglais. 2001. Predicting species invasions using ecological 

niche modeling: New approaches from bioinformatics attack a pressing problem. 

BioScience 51:363–371.

Peterson, A. T., R. Williams, and G. Chen. 2007d. Modeled global invasive potential of 

Asian gypsy moths, Lymantria dispar. Entomologia Experimentalis et Applicata 

125:39–44.

Phillips, S. J. 2008. Transferability, sample selection bias, and background data in 

presence-only modelling: A response to Peterson et al. (2007). Ecography 31:

272–278.

Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling 

of species geographic distributions. Ecological Modelling 190:231–259.

Phillips, S. J., and M. Dudík. 2008. Modeling of species distributions with Maxent: 

New extensions and a comprehensive evaluation. Ecography 31:161–175.

Phillips, S. J., M. Dudík, J. Elith, C. H. Graham, A. Lehmann, J. Leathwick, and S. Ferrier. 

2009. Sample selection bias and presence-only distribution models: Implications 

for background and pseudo-absence data. Ecological Applications 19:181–197.

Phillips, S. J., P. Williams, G. Midgley, and A. Archer. 2008. Optimizing dispersal cor-

ridors for the Cape Proteaceae using network fl ow. Ecological Applications 18:

1200–1211.

Pickett, S.T.A., and F. A. Bazzaz. 1978. Organization of an assemblage of early succes-

sional species on a soil moisture gradient. Ecology 59:1248–1255.

Pielou, E. C. 1984. The Interpretation of Ecological Data: A Primer on Classifi cation 
and Ordination. John Wiley and Sons, New York.

Pimentel, D., R. Zuñiga, and D. Morrison. 2004. Update on the environmental and 

economic costs associated with alien-invasive species in the United States. Eco-

logical Economics 52:273–288.

Porter, W. P., J. L. Sabo, C. R. Tracy, O. J. Reichman, and N. Ramankutty. 2002. Physi-

ology on a landscape scale: Plant-animal interactions. Integrative and Compara-

tive Biology 42:431–453.

Prendergast, J. R., S. N. Wood, J. H. Lawton, and B. C. Eversham. 1993. Correcting for 

variation in recording effort in analyses of diversity hotspots. Biodiversity Let-

ters 1:39–53.

20peterson.281_314.indd   30620peterson.281_314.indd   306 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  3 0 7

Price, J. J., and S. M. Lanyon. 2002. A robust phylogeny of the oropendolas: Polyphyly 

revealed by mitochondrial sequence data. Auk 119:335–348.

———. 2004. Song and molecular data identify congruent but novel affi nities of the 

Green Oropendola (Psarocolius viridis). Auk 121:224–229.

Primack, R. B. 2006. Essentials of Conservation Biology, 4th ed. Sinauer Associates, 

Inc., Sunderland, MA.

Prinzing, A., W. Durka, S. Klotz, and R. Brandl. 2001. The niche of higher plants: Evidence 

for phylogenetic conservatism. Proceedings of the Royal Society 268:2383–2389.

Pulliam, H. R. 1988. Sources, sinks, and population regulation. American Naturalist 

132:652–661.

———. 2000. On the relationship between niche and distribution. Ecology Letters 

3:349–361.

Quattrochi, D. A., and M. F. Goodchild. 1997. Scale in Remote Sensing and GIS. Lewis 

Publishers, Boca Raton, FL.

Rabinowitz, D., S. Cairns, and T. Dillon. 1986. Seven forms of rarity and their fre-

quency in the fl ora of the British Isles. In Conservation Biology: The Science of 
Scarcity and Diversity, M. E. Soulé, editor, pp. 182–204. Sinauer Associates, 

Sunderland, MA.

Raes, N., and H. ter Steege. 2007. A null-model for signifi cance testing of presence-

only species distribution models. Ecography 30:727–736.

Ramírez-Bastida, P., A. G. Navarro-Sigüenza, and A. T. Peterson. 2008. Aquatic bird 

distributions in Mexico: Designing conservation approaches quantitatively. Bio-

diversity and Conservation 17:2525–2558.

Randin, C. F., T. Dirnböck, S. Dullinger, N. E. Zimmermann, M. Zappa, and A. Guisan. 

2006. Are niche-based species’ distribution models transferable in space? Jour-

nal of Biogeography 33:1689–1703.

Raxworthy, C. J., C. M. Ingram, N. Rabibisoa, and R. G. Pearson. 2007. Applications 

of ecological niche modeling for species delimination: A review and empirical 

evaluation using day geckos (Phelsuma) from Madagascar. Systematic Biology 

56:907–923.

Raxworthy, C. J., E. Martínez-Meyer, N. Horning, R. A. Nussbaum, G. E. Schneider, 

M. A. Ortega-Huerta, and A. T. Peterson. 2003. Predicting distributions of known 

and unknown reptile species in Madagascar. Nature 426:837–841.

Raxworthy, C. J., R. G. Pearson, B. M. Zimkus, S. Reddy, A. J. Deo, R. A. Nussbaum, 

and C. M. Ingram. 2008. Continental speciation in the tropics: Contrasting bio-

geographic patterns of divergence in the Uroplatus leaf-tailed gecko radiation of 

Madagascar. Journal of Zoology 275:423–440.

Ray, N., A. Lehmann, and P. Joly. 2002. Modeling spatial distribution of amphibian 

populations: A GIS approach based on habitat matrix permeability. Biodiversity 

and Conservation 11:2143–2165.

Reddy, S., and L. M. Dávalos. 2003. Geographical sampling bias and its implications 

for conservation priorities in Africa. Journal of Biogeography 30:1719–1727.

Reed, K. D., J. K. Meece, J. R. Archer, and A. T. Peterson. 2008. Ecologic niche model-

ing of Blastomyces dermatitidis in Wisconsin. PLoS ONE 3:e2034.

Reed, K. D., J. W. Melski, M. B. Graham, R. L. Regnery, M. J. Sotir, M. V. Wegner, 

J. J. Kazmierczak, E. J. Stratman, Y. Li, J. A. Fairley, G. R. Swain, V. A. Olson, 

E. K. Sargent, S. C. Kehl, M. A. Frace, R. Kline, S. L. Foldy, J. P. Davis, and 

20peterson.281_314.indd   30720peterson.281_314.indd   307 6/8/11   8:56 PM6/8/11   8:56 PM



3 0 8  B I B L I O G R A P H Y

I. K. Damon. 2004. The detection of monkeypox in humans in the Western Hemi-

sphere. New England Journal of Medicine 350:342–350.

Regal, P. J. 1994. Scientifi c principles for ecologically based risk assessment of trans-

genic organisms. Molecular Ecology 3:5–13.

Rescigno, A., and I. W. Richardson. 1973. The deterministic theory of population dy-

namics. In Foundations of Mathematical Biology, Volume 3: Supercellular Sys-
tems, R. Rosen, editor, pp. 238–360. Academic Press, New York.

Richardson, D. M., and J. P. McMahon. 1992. A bioclimatic analysis of Eucalyptus ni-
tens to identify potential planting regions in southern Africa. South African Jour-

nal of Science 88:380–387.

Ricklefs, R. E. 2004. A comprehensive framework for global patterns in biodiversity. 

Ecology Letters 7:1–15.

Ridgely, R. S., T. F. Allnutt, T. Brooks, D. K. McNicol, D. W. Mehlman, B. E. Young, 

and J. R. Zook. 2005. Digital Distribution Maps of the Birds of the Western 

Hemisphere, version 2.1. NatureServe, Arlington, VA.

Rissler, L. J., and J. J. Apodaca. 2007. Adding more ecology into species delimitation: 

Ecological niche models and phylogeography help defi ne cryptic species in the 

black salamander (Aneides fl avipunctatus). Systematic Biology 56:924–942.

Robertson, M. P., M. H. Villet, and A. R. Palmer. 2004. A fuzzy classifi cation technique 

for predicting species’ distributions: Applications using invasive alien plants and 

indigenous insects. Diversity and Distributions 10:461–474.

Rödder, D., S. Schmidtlein, M. Veith, and S. Lötters. 2009. Alien invasive slider turtle 

in unpredicted habitat: A matter of niche shift or of predictors studied? PLoS ONE 

4:e7843.

Rodrigues, A.S.L., and K. J. Gaston. 2001. How large do reserve networks need to be? 

Ecology Letters 4:602–609.

Rogers, D. J., and S. E. Randolph. 1988. Tsetse fl ies in Africa: Bane or boon? Conserva-

tion Biology 2:57–65.

Rogers, D. J., S. E. Randolph, R. W. Snow, and S. I. Hay. 2002. Satellite imagery in the 

study and forecast of malaria. Nature 415:710–715.

Rojas-Soto, O. R., O. Alcántara-Ayala, and A. G. Navarro-Sigüenza. 2003. Regional-

ization of the avifauna of the Baja California Peninsula, Mexico: A parsimony 

analysis of endemicity and distributional modelling approach. Journal of Bioge-

ography 30:449–461.

Rojas-Soto, O. R., E. Martínez-Meyer, A. G. Navarro-Sigüenza, A. Oliveras de Ita, 

H. Gómez de Silva, and A. T. Peterson. 2008. Modeling distributions of disjunct 

populations of the Sierra Madre Sparrow. Journal of Field Ornithology 79:245–253.

Ron, S. R. 2005. Predicting the distribution of the amphibian pathogen Batrachochy-
trium dendrobatidis in the New World. Biotropica 37:209–221.

Root, T. 1988. Environmental factors associated with avian distributional boundaries. 

Journal of Biogeography 15:489–505.

Rotenberry, J. T., K. L. Preston, and S. T. Knick. 2006. GIS-based niche modeling for 

mapping species’ habitat. Ecology 87:1458–1464.

Rotenberry, J. T., and J. A. Wiens. 1980. Habitat structure, patchiness, and avian com-

munities in North American steppe vegetation: A multivariate analysis. Ecology 

61:1228–1250.

short

20peterson.281_314.indd   30820peterson.281_314.indd   308 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  3 0 9

Roura-Pascual, N., A. V. Suarez, C. Gómez, P. Pons, Y. Touyama, A. L. Wild, and A. T. 

Peterson. 2005. Geographic potential of Argentine ants (Linepithema humile 

Mayr) in the face of global climate change. Proceedings of the Royal Society B 

271:2527–2535.

Roura-Pascual, N., A. V. Suarez, K. M. McNyset, C. Gómez, P. Pons, Y. Touyama, A. L. 

Wild, F. Gascon, and A. T. Peterson. 2006. Niche differentiation and fi ne-scale 

projections for Argentine ants based on remotely sensed data. Ecological Appli-

cations 16:1832–1841.

Sánchez-Cordero, V., P. Illoldi-Rangel, M. Linaje, S. Sarkar, and A. T. Peterson. 2005. 

Deforestation and extant distributions of Mexican endemic mammals. Biological 

Conservation 126:465–473.

Sánchez-Cordero, V., and E. Martínez-Meyer. 2000. Museum specimen data predict 

crop damage by tropical rodents. Proceedings of the National Academy of Sci-

ences USA 97:7074–7077.

Scott, J. K., and F. D. Panetta. 1993. Predicting the Australian weed status of southern 

African plants. Journal of Biogeography 20:87–93.

Scott, J. M., F. Davis, B. Csuti, R. Noss, B. Butterfi eld, C. Groves, H. Anderson, 

S.  Caicco, F. D’Erichia, T. C. Edwards, Jr., J. Ulliman, and R. G. Wright. 1993. 

Gap analysis: A geographic approach to protection of biological diversity. Wild-

life Monographs 123:3–41.

Scott, J. M., T. H. Tear, and F. W. Davis, editors. 1996. Gap Analysis: A Landscape Ap-
proach to Biodiversity Planning. American Society for Photogrammetry and 

Remote Sensing, Bethesda, MD.

Segurado, P., and M. B. Araújo. 2004. An evaluation of methods for modelling species 

distributions. Journal of Biogeography 31:1555–1568.

Segurado, P., M. B. Araújo, and W. E. Kunin. 2006. Consequences of spatial auto-

correlation for niche-based models. Journal of Applied Ecology 43:433–444.

Sexton, J. P., P. J. McIntyre, A. L. Angert, and K. J. Rice. 2009. Evolution and ecology 

of species range limits. Annual Review of Ecology, Evolution, and Systematics 

40:415–436.

Shao, J., and C.F.J. Wu. 1989. A general theory for jackknife variance estimation. An-

nals of Statistics 17:1176–1197.

Shin, S. I., Z. Liu, B. Otto-Bliesner, E. C. Brady, J. E. Kutzbach, and S. P. Harrison. 2003. 

A simulation of the Last Glacial Maximum climate using the NCAR-CCSM. Cli-

mate Dynamics 20:127–151.

Silvertown, J. 2004. Plant coexistence and the niche. Trends in Ecology and Evolution 

19:605–611.

Silvertown, J., M. Dodd, D. Gowning, C. Lawson, and K. McConway. 2006. Phylogeny 

and the hierarchical organization of plant diversity. Ecology 87:S39–S49.

Siqueira, M. F., G. Durigan, P. de Marco, Jr., and A. T. Peterson. 2009. Something from 

nothing: Using landscape similarity and ecological niche modeling to fi nd rare 

plant species. Journal for Nature Conservation 17:25–32.

Siqueira, M. F., and A. T. Peterson. 2003. Global climate change consequences for cer-

rado tree species. Biota Neotropica 3:1–14.

Smith, P. A. 1994. Autocorrelation in logistic regression modelling of species’ distribu-

tion. Global Ecology and Biogeography Letters 4:47–61.

short

20peterson.281_314.indd   30920peterson.281_314.indd   309 6/8/11   8:56 PM6/8/11   8:56 PM



3 1 0  B I B L I O G R A P H Y

Soberón, J. 1999. Linking biodiversity information sources. Trends in Ecology and 

Evolution 14:291.

———. 2007. Grinnellian and Eltonian niches and geographic distributions of species. 

Ecology Letters 10:1115–1123.

———. 2010. Niche and area of distribution modeling: A population ecology perspec-

tive. Ecography 33:1–9.

Soberón, J., L. Arriaga, and L. Lara. 2002. Issues of quality control in large, mixed- 

origin entomological databases. In Towards a Global Biological Information In-
frastructure, H. Saarenmaa and E. Nielsen, editors, pp. 15–22. European Envi-

ronmental Agency, Copenhagen.

Soberón, J., J. Golubov, and J. Sarukhán. 2001. The importance of Opuntia in Mexico 

and routes of invasion and impact of Cactoblastis cactorum (Lepidoptera: Pyrali-

dae). Florida Entomologist 84:486–492.

Soberón, J., R. Jiménez, J. Golubov, and P. Koleff. 2007. Assessing completeness of 

biodiversity databases at different spatial scales. Ecography 30:152–160.

Soberón, J., J. Llorente, and H. Benítez. 1996. An international view of national bio-

logical surveys. Annals of the Missouri Botanical Garden 83:562–573.

Soberón, J., J. B. Llorente, and L. Oñate. 2000. The use of specimen-label databases for 

conservation purposes: An example using Mexican papilionid and pierid butter-

fl ies. Biodiversity and Conservation 9:1441–1466.

Soberón, J., and M. Nakamura. 2009. Niches and distributional areas: Concepts, meth-

ods, and assumptions. Proceedings of the National Academy of Sciences USA 

106:19644–19650.

Soberón, J., and A. T. Peterson. 2004. Biodiversity informatics: Managing and applying 

primary biodiversity data. Philosophical Transactions of the Royal Society of 

London B 359:689–698.

———. 2005. Interpretation of models of fundamental ecological niches and species’ 

distributional areas. Biodiversity Informatics 2:1–10.

———. 2008. Monitoring biodiversity loss with primary species-occurrence data: To-

ward national-level indicators for the 2010 Target of the Convention on Biological 

Diversity. AMBIO 38:29–34.

Sokal, R. R., and F. J. Rohlf. 1995. Biometry: The Principles and Practice of Statistics 
in Biological Research, 3rd ed. W. H. Freeman, New York.

Solé, R. V., and J. Bascompte. 2006. Self-organization in Complex Ecosystems. Prince-

ton University Press, Princeton, NJ.

SSIC. 2009. Rapportsystemet för fåglar; http://www.artportalen.se/birds/. Swedish 

Species Information Centre.

Stein, B. R., and J. Wieczorek. 2004. Mammals of the world: MaNIS as an example of 

data integration in a distributed network environment. Biodiversity Informatics 

1:14–22.

Stockwell, D.R.B. 2006. Improving ecological niche models by data mining large envi-

ronmental datasets for surrogate models. Ecological Modelling 192:188–196.

———. 2007. Niche Modeling: Predictions from Statistical Distributions. Chapman & 

Hall/CRC, London.

Stockwell, D.R.B., and D. P. Peters. 1999. The GARP modelling system: Problems and 

solutions to automated spatial prediction. International Journal of Geographical 

Information Systems 13:143–158.

20peterson.281_314.indd   31020peterson.281_314.indd   310 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  3 1 1

Strasburg, J. L., M. Kearney, C. Moritz, and A. R. Templeton. 2007. Combining phylo-

geography with distribution modeling: Multiple Pleistocene range expansions in 

a parthenogenetic gecko from the Australian arid zone. PLoS ONE 2:e760.

Sutherst, R. W. 2001. The vulnerability of animal and human health to parasites under 

global change. International Journal for Parasitology 31:933–948.

———. 2003. Prediction of species geographical ranges. Journal of Biogeography 30:

805–816.

Svenning, J.-C., S. Normand, and F. Skov. 2008. Postglacial dispersal limitation of 

widespread forest plant species in nemoral Europe. Ecography 31:316–326.

Svenning, J.-C., and F. Skov. 2004. Limited fi lling of the potential range in European 

tree species. Ecology Letters 7:565–573.

Sweeney, A. W., N. W. Beebe, R. D. Cooper, J. T. Bauer, and A. T. Peterson. 2006. Envi-

ronmental factors associated with distribution and range limits of malaria vector 

Anopheles farauti in Australia. Journal of Medical Entomology 43:1068–1075.

Swets, J. A. 1988. Measuring the accuracy of diagnostic systems. Science 240:1285–1293.

Sykes, M. T., I. C. Prentice, and W. Cramer. 1996. A bioclimatic model for the potential 

distributions of north European tree species under present and future climates. 

Journal of Biogeography 23:203–233.

Tarassenko, L. 1998. Guide to Neural Computing Applications, 1st ed. John Wiley & 

Sons, New York.

Tax, D.M.J., and R. P. W. Duin. 1999. Support vector domain description. Pattern Rec-

ognition Letters 20:1191–1199.

Téllez-Valdés, O., and P. Dávila-Aranda. 2003. Protected areas and climate change: A 

case study of the cacti in the Tehuacan-Cuicatlan Biosphere Reserve, Mexico. 

Conservation Biology 17:846–853.

Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Colling-

ham, B. F. N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, 

B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, 

A. T. Peterson, O. L. Phillips, and S. E. Williams. 2004a. Extinction risk from 

climate change. Nature 427:145–148.

Thomas, C. D., and J. J. Lennon. 1999. Birds extend their ranges northwards. Nature 

399:213.

Thomas, J. A., M. G. Telfer, D. B. Roy, C. D. Preston, J.J.D. Greenwood, J. Asher, R. Fox, 

R. T. Clarke, and J. H. Lawton. 2004b. Comparative losses of British butterfl ies, 

birds, and plants and the global extinction crisis. Science 303:1879–1881.

Thompson, J. N. 2005. The Geographic Mosaic of Coevolution. University of Chicago 

Press, Chicago.

Thomson, M. C., D. A. Elnaiem, R. W. Ashford, and S. J. Connor. 1999. Towards a kala 

azar risk map for Sudan: Mapping the potential distribution of Phlebotomus ori-
entalis using digital data of environmental variables. Tropical Medicine and In-

ternational Health 4:105–113.

Thomson, M. C., V. Obsomer, M. Dunne, S. J. Connor, and D. H. Molyneux. 2000. 

Satellite mapping of loa loa prevalence in relation to ivermectin use in west and 

central Africa. Lancet 356:1077–1078.

Thuiller, W. 2003. BIOMOD—Optimizing predictions of species distributions and pro-

jecting potential future shifts under global change. Global Change Biology 9:

1353–1362.

20peterson.281_314.indd   31120peterson.281_314.indd   311 6/8/11   8:56 PM6/8/11   8:56 PM



3 1 2  B I B L I O G R A P H Y

———. 2004. Patterns and uncertainties of species’ range shifts under climate change. 

Global Change Biology 10:2020–2027.

Thuiller, W., M. B. Araújo, and S. Lavorel. 2003. Generalized models versus classifi -

cation tree analysis: Predicting spatial distributions of plant species at different 

scales. Journal of Vegetation Science 14:669–680.

———. 2004a. Do we need land-cover data to model species distributions in Europe? 

Journal of Biogeography 31:353–361.

Thuiller, W., M. B. Araújo, R. G. Pearson, R. J. Whittaker, L. Brotons, and S. Lavorel. 

2004b. Biodiversity conservation: Uncertainty in predictions of extinction risk. 

Nature 430:33.

Thuiller, W., L. Brotons, M. B. Araújo, and S. Lavorel. 2004c. Effects of restricting 

environmental range of data to project current and future species distributions. 

Ecography 27:165–172.

Thuiller, W., B. Lafourcade, R. Engler, and M. Araújo. 2009. BIOMOD—A platform 

for ensemble forecasting of species distributions. Ecography 32:369–373.

Thuiller, W., S. Lavorel, M. B. Araújo, M. T. Sykes, and I. C. Prentice. 2005a. Climate 

change threats to plant diversity in Europe. Proceedings of the National Acad-

emy of Sciences USA 102:8245–8250.

Thuiller, W., D. M. Richardson, P. Pysék, G. F. Midgley, G. O. Hughes, and M. Rouget. 

2005b. Niche-based modelling as a tool for predicting the global risk of alien 

plant invasions. Global Change Biology 11:2234–2250.

Tiedje, J. M., R. K. Colwell, Y. L. Grossman, R. E. Hodson, R. E. Lenski, R. N. Mack, 

and P. J. Regal. 1989. The planned introduction of genetically engineered organ-

isms: Ecological considerations and recommendations. Ecology 70:298–315.

Tilman, D. 1982. Resource Competition and Community Structure. Princeton Univer-

sity Press, Princeton, NJ.

Timm, R. M., R. M. Salazar, and A. T. Peterson. 1997. Historical distribution of the 

extinct tropical seal, Monachus tropicalis (Carnivora: Phocidae). Conservation 

Biology 11:549–551.

Toribio, M., and A. T. Peterson. 2008. Prioritisation of Mexican lowland rain forests for 

conservation using modelled geographic distributions of birds. Journal for Na-

ture Conservation 16:109–116.

Udvardy, M.D.F. 1969. Dynamic Zoogeography. With Special Reference to Land Ani-
mals. Van Nostrand Reinhold, New York.

Usinger, R. L., P. Wygodzinsky, and R. E. Ryckman. 1966. The biosystematics of Tri-

atominae. Annual Review of Entomology 11:309–330.

Vaclavik, T., and R. K. Meentemeyer. 2009. Invasive species distribution modeling 

(iSDM): Are absence data and dispersal constraints needed to predict actual dis-

tributions? Ecological Modelling 220:3248–3258.

Vanak, A. T., M. Irfan-Ullah, and A. T. Peterson. 2008. Gap analysis of Indian Fox 

conservation using ecological niche modelling. Journal of the Bombay Natural 

History Society 105:49–54.

Vandermeer, J. H. 1972. Niche theory. Annual Review of Ecology and Systematics 3:

107–132.

VanDerWal, J., L. P. Shoo, C. N. Johnson, and S. E. Williams. 2009. Abundance and the 

environmental niche: Environmental suitability estimated from niche models 

predicts the upper limit of local abundance. American Naturalist 174:282–291.

20peterson.281_314.indd   31220peterson.281_314.indd   312 6/8/11   8:56 PM6/8/11   8:56 PM



B I B L I O G R A P H Y  3 1 3

Vane-Wright, R. I. 1996. Identifi cation of priorities for the conservation of biodiversity: 

Systematic biological criteria within a socio-political framework. In Biodiver-
sity: A Biology of Numbers and Difference, K. J. Gaston, editor, pp. 309–344. 

Blackwell Science, Oxford, UK.

Vane-Wright, R. I., C. J. Humphries, and P. H. Williams. 1991. What to protect?— 

Systematics and the agony of choice. Biological Conservation 55:235–254.

Van Lieshout, M., R. S. Kovats, M.T.J. Livermore, and P. Martens. 2004. Climate 

change and malaria: Analysis of the SRES climate and socio-economic scenar-

ios. Global Environmental Change 14:87–99.

Varela, S., J. Rodríguez, and J. M. Lobo. 2009. Is current climatic equilibrium a guar-

antee for the transferability of distribution model predictions? A case study of the 

spotted hyena. Journal of Biogeography 36:1645–1655.

Veloz, S. D. 2009. Spatially autocorrelated sampling falsely infl ates measures of accu-

racy for presence-only niche models. Journal of Biogeography 36:2290–2299.

Voss, R. S., and L. H. Emmons. 1996. Mammalian diversity in Neotropical lowland 

rainforests: A preliminary assessment. Bulletin of the American Museum of 

Natural History 230:1–115.

Walker, P. A., and K. D. Cocks. 1991. HABITAT: A procedure for modelling a disjoint 

environmental envelope for a plant or animal species. Global Ecology and Bio-

geography Letters 1:108–118.

Waltari, E., R. J. Hijmans, A. T. Peterson, Á. S. Nyári, S. L. Perkins, and R. P. Gural-

nick. 2007. Locating Pleistocene refugia: Comparing phylogeographic and eco-

logical niche model predictions. PLoS ONE 2:e563.

Walther, G.-R., S. Berger, and M. T. Sykes. 2005. An ecological “footprint” of climate 

change. Proceedings of the Royal Society B 272:1427–1432.

Ward, G., T. Hastie, S. Barry, J. Elith, and J. R. Leathwick. 2009. Presence-only data 

and the EM algorithm. Biometrics 65:554–563.

Warren, D. L., R. E. Glor, and M. Turelli. 2008. Environmental niche equivalency 

versus conservatism: Quantitative approaches to niche evolution. Evolution 62:

2868–2883.

Welk, E., K. Schubert, and M. H. Hoffmann. 2002. Present and potential distribution of 

invasive garlic mustard (Alliaria petiolata) in North America. Diversity and Dis-

tributions 8:219–233.

Wells, P. V., and C. D. Jorgensen. 1964. Pleistocene wood rat middens and climatic change 

in mohave desert: A record of juniper woodlands. Science 143:1171–1173.

Whittaker, R. H., S. A. Levin, and R. B. Root. 1973. Niche, habitat, and ecotope. Ameri-

can Naturalist 955:321–338.

Whittaker, R. J., M. B. Araújo, P. Jepson, R. J. Ladle, J.E.M. Watson, and K. J. Willis. 

2005. Conservation biogeography: Assessment and prospect. Diversity and Dis-

tributions 11:3–23.

Wieczorek, J., Q. Guo, and R. J. Hijmans. 2004. The point-radius method for georefer-

encing locality descriptions and calculating associated uncertainty. International 

Journal of Geographical Information Science 18:745 –767.

Wiens, J. J. 2004. Speciation and ecology revisited: Phylogenetic niche conservatism 

and the origin of species. Evolution 58:193–197.

———. 2007. Species delimitation: New approaches for discovering diversity. System-

atic Biology 56:875–878.

20peterson.281_314.indd   31320peterson.281_314.indd   313 6/8/11   8:56 PM6/8/11   8:56 PM



3 1 4  B I B L I O G R A P H Y

Wiens, J. J., and C. H. Graham. 2005. Niche conservatism: Integrating evolution, ecol-

ogy, and conservation biology. Annual Review of Ecology, Evolution, and Sys-

tematics 36:519–539.

Wilby, R. L., and T.M.L. Wigley. 1997. Downscaling general circulation model output: A 

review of methods and limitations. Progress in Physical Geography 21:530–548.

Wiley, E. O., K. M. McNyset, A. T. Peterson, C. R. Robins, and A. M. Stewart. 2003. 

Niche modeling and geographic range predictions in the marine environment 

using a machine-learning algorithm. Oceanography 16:120–127.

Williams, J. W., and S. T. Jackson. 2007. Novel climates, no-analog communities, and 

ecological surprises. Frontiers in Ecology and the Environment 5:475–482.

Williams, P. H. 2001. Complementarity. In Encyclopedia of Biodiversity, 2nd ed., S. A. 

Levin, editor, pp. 813–829. Academic Press, San Diego, CA.

Williams, P. H., L. Hannah, S. Andelman, G. Midgley, M. B. Araújo, G. Hughes, 

L. Manne, E. Martínez-Meyer, and R. G. Pearson. 2005. Planning for climate 

change: Identifying minimum-dispersal corridors for the Cape Proteaceae. Con-

servation Biology 19:1063–1074.

Williams, R.A.J., F. O. Fasina, and A. T. Peterson. 2008. Predictable ecology and geog-

raphy of avian infl uenza (H5N1) transmission in Nigeria and West Africa. Trans-

actions of the Royal Society of Tropical Medicine and Hygiene 102:471–479.

Williamson, M. 1996. Biological Invasions. Chapman & Hall, London.

Wilson, E. O., editor. 1988. Biodiversity. National Academy Press, Washington, DC.

Wisz, M. S., R. Hijmans, J. Li, A. T. Peterson, C. H. Graham, A. Guisan, and the 

NCEAS Predicting Species Distributions Working Group. 2008. Effects of sam-

ple size on the performance of species distribution models. Diversity and Distri-

butions 14:763–773.

Woodward, F. I., and D. J. Beerling. 1997. The dynamics of vegetation change: Health 

warnings for equilibrium “dodo” models. Global Ecology and Biogeography 

Letters 6:413–418.

Wright, S. 1982. The Shifting Balance Theory and macroevolution. Annual Review of 

Genetics 16:1–20.

Yeshiwondim, A. K., S. Gopal, A. T. Hailemariam, D. O. Dengela, and H. P. Patel. 

2009. Spatial analysis of malaria incidence at the village level in areas with un-

stable transmission in Ethiopia. International Journal of Health Geographics 8:5; 

doi:10.1186/1476-072X-8-5.

Yoshiyama, R. M., and J. Roughgarden. 1977. Species packing in two dimensions. 

American Naturalist 111:107–121.

Zambrano, L., E. Martínez-Meyer, N. Menezes, and A. T. Peterson. 2006. Invasive po-

tential of common carp (Cyprinus carpio) and Nile tilapia (Oreochromis niloti-
cus) in American freshwater systems. Canadian Journal of Fisheries and Aquatic 

Sciences 63:1903–1910.

Zaniewski, A. E., A. Lehmann, and J. M. Overton. 2002. Predicting species spatial dis-

tributions using presence-only data: A case study of native New Zealand ferns. 

Ecological Modelling 157:261–280.

Zavaleta, E. S., R. J. Hobbs, and H. A. Mooney. 2001. Viewing invasive species removal 

in a whole-ecosystem context. Trends in Ecology and Evolution 16:454–459.

Zink, R. M., and M. C. McKitrick. 1995. The debate about species concepts and its 

implications for ornithology. Auk 112:701–719.

20peterson.281_314.indd   31420peterson.281_314.indd   314 6/8/11   8:56 PM6/8/11   8:56 PM



26.  Plant Strategies and the Dynamics and Structure of Plant Communities, 

by David Tilman

27.  Population Harvesting: Demographic Models of Fish, Forest, and Animal 
Resources, by Wayne M. Getz and Robert G. Haight

28.  The Ecological Detective: Confronting Models with Data, by Ray Hilborn 

and Marc Mangel

29.  Evolutionary Ecology across Three Trophic Levels: Goldenrods, Gallmak-
ers, and Natural Enemies, by Warren G. Abrahamson and Arthur E. Weis

30.  Spatial Ecology: The Role of Space in Population Dynamics and Inter-
specifi c Interactions, edited by David Tilman and Peter Kareiva

31.  Stability in Model Populations, by Laurence D. Mueller and Amitabh 

Joshi

32.  The Unifi ed Neutral Theory of Biodiversity and Biogeography, by 

Stephen P. Hubbell

33.  The Functional Consequences of Biodiversity: Empirical Progress and 
Theoretical Extensions, edited by Ann P. Kinzig, Stephen J. Pacala, and 

David Tilman

34.  Communities and Ecosystems: Linking the Aboveground and Below-
ground Components, by David Wardle

35.  Complex Population Dynamics: A Theoretical/Empirical Synthesis, by 

Peter Turchin

36.  Consumer-Resource Dynamics, by William W. Murdoch, Cheryl J. 

Briggs, and Roger M. Nisbet

37.  Niche Construction: The Neglected Process in Evolution, by F. John 

Odling-Smee, Kevin N. Laland, and Marcus W. Feldman

38.  Geographical Genetics, by Bryan K. Epperson

39.  Consanguinity, Inbreeding, and Genetic Drift in Italy, by Luigi Luca 

Cavalli-Sforza, Antonio Moroni, and Gianna Zei

40.  Genetic Structure and Selection in Subdivided Populations, by François 

Rousset

41.  Fitness Landscapes and the Origin of Species, by Sergey Gavrilets

42.  Self-Organization in Complex Ecosystems, by Ricard V. Solé and Jordi 

Bascompte

43.  Mechanistic Home Range Analysis, by Paul R. Moorcroft and Mark A. 

Lewis

44.  Sex Allocation, by Stuart West

45.  Scale, Heterogeneity, and the Structure of Diversity of Ecological 
Communities, by Mark E. Ritchie

46.  From Populations to Ecosystems: Theoretical Foundations for a New 
Ecological Synthesis, by Michel Loreau

22peterson.A_B.indd   A22peterson.A_B.indd   A 6/7/11   6:50 PM6/7/11   6:50 PM



47.  Resolving Ecosystem Complexity, by Oswald J. Schmitz

48.  Adaptive Diversifi cation, by Michael Doebeli

49.  Ecological Niches and Geographic Distributions, by A. Townsend 

Peterson, Jorge Soberón, Richard G. Pearson, Robert P. Anderson, 

Enrique Martínez-Meyer, Miguel Nakamura, and Miguel Bastos Araújo

22peterson.A_B.indd   B22peterson.A_B.indd   B 6/7/11   6:50 PM6/7/11   6:50 PM

View publication statsView publication stats

https://www.researchgate.net/publication/230709994

	00peterson.fm.i_xii
	01peterson.001_004
	02peterson.005_022
	03peterson.023_048
	04peterson.049_061
	05peterson.062_081
	06peterson.082_096
	07peterson.097_137
	08peterson.138_149
	09peterson.150_182
	10peterson.183_188
	11peterson.189_199
	12peterson.200_214
	13peterson.215_225
	14peterson.226_237
	15peterson.238_255
	16peterson.256_258
	17peterson.259_265
	18peterson.266_268
	19peterson.269_280
	20peterson.281_314
	22peterson.A_B
	Untitled


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 12
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




