
Elith, Leathwick & Hastie         A working guide to boosted regression trees - 0nline Appendices                         Page 1 

Appendix S1: Explanation of the effect of learning rate on predictive stability in boosted regression 
trees 
 
As explained in Elith, Leathwick & Hastie (2008), the learning rate (lr) sets the shrinkage applied to each 
tree in the boosted regression tree (BRT) model. For example, a model with 1000 trees fitted with lr = 0.005 
will produce predictions that are the sum of predictions from each of the 1000 trees multiplied by 0.005. 
However, it is important to recognize that while the same shrinkage is applied to all the trees in a BRT model, 
not all the trees have equal contributions to error reduction. This is because those trees fitted initially will 
describe the most general and strongest patterns in the data, and will therefore explain large amounts of 
deviance. This is clearly shown by the rapid initial reduction in predictive deviance in Figure 5 of Elith et 
al.(2008). By contrast, those trees fitted later in a BRT model will explain more particular features of the 
data, and will therefore result in lower incremental reductions in predictive deviance than the initial trees, as 
reflected in the flattening out of the deviance reduction curve in Fig. 5 of Elith et al. (2008).  
 
This strong influence of the initial trees in a BRT model has important practical implications related to model 
variability, which become particularly apparent if a "fast" learning rate (i.e. large value of lr)  is used in 
combination with stochastic boosting. While repeated fits of a model with large lr may produce models with 
similar predictive performance (as measured for example using AUC) and similar partial plots, marked 
differences (instability or variance) can occur in the fitted and predicted values for individual observations. 
This variation is caused by the stochastic component of model building, in which random subsets of data are 
selected for fitting each tree. Effects of stochasticity are more apparent with (i) larger learning rates, because 
individual trees have increased influence, and (ii) as the bag fraction is decreased, because smaller random 
subsets lead to increased chances of "unusual" trees being fit.  
 
In effect, the variance in predictions or fitted values represents uncertainty around a mean estimate. Note that  
such uncertainty is also present in more deterministic models (e.g., GLM), despite the apparent stability of 
their fitted or predicted values, which remain constant if they are fitted repeatedly. In many of these models, 
the magnitude of the variation can be assessed by calculating estimates of the standard errors associated with 
the fitted values or predictions. In ecological and conservation applications a stable and accurate estimate of 
the mean will often be required. This can be achieved by building a BRT model with no stochasticity 
(bag fraction of 1), repeat runs of which produces identical values (i.e., no run to run variability). However, 
this will be achieved at the cost of some loss in predictive performance, because stochasticity often improves 
predictive performance (Friedman 2002). A more effective way to control this instability is to retain the 
stochastic component of model fitting but using a slower learning rate, reducing the amount by which the 
individual initial trees contribute to the final model, and smoothing out the effects of the stochastic selection 
process. Alternatively, repeat BRT models can be fitted and the predictions averaged, as demonstrated by 
De'ath (2007) with his "aggregated boosted trees" (ABT). A disadvantage of the ABT approach is that the 
models used to contribute to the final average are all built on subsets of the training data used within cross-
validation, leading to some information loss. We prefer using one BRT model built with a slow learning rate 
on the entire dataset.   

The magnitude of the variation can be surprising, as demonstrated here on the case study data of Elith et al. 
(2008). Using the cross-validation gbm.step function (see online tutorial and code), the 1000-site training 
dataset, a tree complexity of 5 and bag fraction of 0.5, we determined the optimal number of trees for each of 
five learning rates (Table A1). These were then used as the fixed number of trees in a BRT model, fitted 10 
times to the same data; for each repetition the fitted model was then used to predict to 1000 independent sites. 
The mean and variance for the fitted and predicted probabilities were then calculated over the 10 repeats (Fig. 
A1). Results clearly show how the between-model variances in the predicted values are reduced when a 
slower lr is used (Fig. A1, left column). A similar effect is also seen in the fitted values for the training data 
(Fig. A1, right column), but as expected, variances for these are smaller than those for predictions made to 
new sites. 
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Table S1: Learning rates and numbers of trees used to fit BRT models to the training data (1000 sites). These were 
estimated using cross-validation and gbm.step (see online tutorial) 
 

Learning rate Number of trees 
0.025 250 
0.01 600 
0.005 1200 
0.0025 2400 
0.001 5000 

 

 
Figure S1: Variances in predicted (left column) and fitted values (right column) as a function of probability (x 
axis), calculated across 10 repeats of BRT models fitted to data from 1000 sites with learning rates from 0.025 (top 
panel) to 0.001 (bottom panel). For numbers of trees in each model see Table A1.  
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Appendix S2: Simplifying the predictor set. 
 
Our strategy for elimination of non-informative variables involves simplifying the model by dropping the 
least important predictor, then re-fitting the model and sequentially repeating the process until some stopping 
criterion is reached (e.g., the reduction in predictive performance exceeds some threshold). This 
simplification process is run within a 10-fold cross-validation (CV) procedure, progressively simplifying the 
model fitted to each fold, and using the average CV error to decide how many variables can be removed 
from the original model without affecting predictive performance (Fig. A2, and see tutorial and code online) 
 
In the case study of Elith, Leathwick & Hastie (2008) the two least important variables in the original model 
fitted to the training set of 1000 sites had a total influence of only 3% in the full model. They were removed 
through simplification, resulting in a minor reordering of contributions for the retained predictors (Table 
A2).This had virtually no effect on predictive performance, estimated to be 28.2% deviance explained and 
AUC = 0.86 on independent data (Table A3). This is a good result – the simplification resulted in a more 
parsimonious model, without degradation of model fit. In smaller data sets, we have frequently observed an 
improvement in estimated predictive performance with model simplification.   
 

 

Figure  S2  - Simplification of the model presented in Table 2 and Figure 6 (Elith et al. 2008), showing that removal of 
2 predictors (vertical line) does not adversely affect model predictive performance. The solid line indicates the mean 
change in predictive deviance, and the dotted line one standard error, calculated over the 10 folds of the cross-validation. 

 
Table S2: Summary of the relative contributions (%) of predictor variables for boosted regression tree models 
developed with cross-validation on data from 1000 sites and a tree complexity of 5. The base model (Elith et al. 2008) 
was fitted with all 12 predictors, and two were removed with simplification. 
 

Predictor Base model Simplified model 
SegSumT 24.7 25.3 
USNative 11.3 12.1 
Method 11.1 11.1 
DSDist 9.7 10.2 
LocSed 8.0 8.1 
DSMaxSlope 7.3 7.9 
USSlope 6.9 6.9 
USRainDays 6.5 7.1 
USAvgT 5.7 5.6 
SegTSeas 5.7 5.6 
SegLowFlow 2.9 - 
DSDam 0.1 - 
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Table S3: Characteristics of models and their predictive performance, as evaluated on the independent 12,369 
records, within a cross-validation, or on training data. All models developed with cross-validation on data from 1000 
sites , learning rate of 0.005, tree complexity of 5, using variables detailed in Table 1, Elith, Leathwick & Hastie (2008) 

 Base model Simplified 
model 

Number of sites 1000 1000 
No. trees 1050 1000 
No. predictors 12 10 

independent 28.3 28.2 
CV1 31.3 (0.96) 30.4 (0.97) 

% deviance explained  

train 52.6 51.6 
independent 0.858 0.858 
CV1 0.869 (0.015) 0.868 (0.014) 

AUC2  

train 0.958 0.955 
 

1 Mean, with standard errors in brackets 
2 AUC = area under the Receiver Operating Characteristic curve 
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