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[presence + absence records ]

SPECIES DISTRIBUTION MODELS principle

Presence / Layer 1 Layer 2 Layer 3
absence? e.g. Depth eg.T° e.g. Salinity
1 -351 0.2 324
1 -150 -14 32.1
0 -1053 -2 32.8
1 -3042 0.3 31.9

[Predicted distribution]




CALIBRATION: Environmental variables
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* Number of environmental variables?



CALIBRATION: Environmental variables

e Number of environmental variables?
=>» Ecological relevance vs. parcimony
=>» New algorithms can deal with redondant/useless information



CALIBRATION: Environmental variables
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CALIBRATION: Environmental variables

e Number of environmental variables?
=>» Ecological relevance vs. parcimony
=>» New algorithms can deal with redondant/useless information

e Be careful with average information
=>» (relevance of average environment ? vs. amplitude/min/max?)



CALIBRATION: Environmental variables

CORRELATION BETWEEN ENVIR. VARIABLES




CALIBRATION: Environmental variables

CORRELATION BETWEEN ENVIR. VARIABLES

-> situation where at least two variables are related in a
statistical model



CALIBRATION: Environmental variables

CORRELATION BETWEEN ENVIR. VARIABLES

-> situation where at least two variables are related in a
statistical model

¢

*Can biais modelling outputs
*Can inflate errors

*Generally removed before generating the models



CALIBRATION: Environmental variables

STATISTICS TO DEAL WITH COLLINEARITY

eSpearman correlation/ correlation matrix

*Variance Inflation Factor (VIF) (threshold : 10 or 5 according to studies)

1
1- R?

VIF=

(more details in https://www.statisticshowto.datasciencecentral.com/variance-inflation-factor/)

* Automatic removal by most machine learning approaches



CALIBRATION: Environmental variables

INFLUENCE OF SPATIAL RESOLUTION AND SCALE
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CALIBRATION: Environmental variables

INFLUENCE OF SPATIAL RESOLUTION AND SCALE
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CALIBRATION: Environmental variables

INFLUENCE OF SPATIAL RESOLUTION AND SCALE

Narrower niches
-> better predictive performances

Barve et al. 2011
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CALIBRATION: Environmental variables

.

INFLUENCE OF MISSING DATA
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Seafloor T° on the Kerguelen Plateau
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INFLUENCE OF MISSING DATA ‘

CALIBRATION: Environmental variables

Partial coverage of the information -> interpolation or not / missing values

Presence data falling on missing values
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CALIBRATION: Environmental variables

INFLUENCE OF MISSING DATA ‘

* Partial coverage of the information -> interpolation or not / missing values

* Full night in winter -> no satellite data

Presence data falling on missing values
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CALIBRATION: Environmental variables

.

* Partial coverage of the information -> interpolation or not / missing values

INFLUENCE OF MISSING DATA

* Full night in winter -> no satellite data

* Some algorithms cannot handle missing data |

=» See tomorrow’s course
=>» Need to interpolate the data
=>» Be careful with the interpretation of your results

13



Questions on this
part 2?7




[presence + absence records ]

SPECIES DISTRIBUTION MODELS principle

Presence / Layer 1 Layer 2 Layer 3
absence? e.g. Depth eg.T° e.g. Salinity
1 -351 0.2 324
1 -150 -14 32.1
0 -1053 -2 32.8
1 -3042 0.3 31.9

[Predicted distribution]
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CALIBRATION: Occurrence dataset




CALIBRATION: Occurrence dataset

¢

SDM can be run with

* Abundance data (some algorithms)
* Presence- absence data
* Presence-only data

RK: Occurrence and environmental variables selection is the most difficult
task for running SDMs !
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CALIBRATION: Occurrence dataset

¢

Generate absence data
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CALIBRATION: Occurrence dataset

¢

Generate absence data

*Experts dires
*Absences surveys (trawls)

In broad-scale areas

-> difficult to rely on absence records
-> above all if historical compilation of several datasets

18



CALIBRATION: Occurrence dataset

¢

In the case of presence-only data, it is necessary to define the
environment around which they are located

=» Sampling of background data in the area to calibrate the
model

19



CALIBRATION: Occurrence dataset

In broad scale areas, difficult to rely on absence data

Presence-only/background SDMs are less reliable and powerful
than presence-absence models (Brotons et al. 2004, Wisz & Guisan 2009)

Occurrences of a sea star species in the SO 50



CALIBRATION: Occurrence dataset

Presence records Halicarcinus platanus

=

21



CALIBRATION: Occurrence dataset

Presence records Halicarcinus platanus

21



CALIBRATION: Occurrence dataset

CRUCIAL TO EXPLORE YOUR DATASET

* Plotit, study each occurrence -> reliable or not ?
* Georeferencing errors ?

=>» Essential because it is responsible for strong bias in your
SDM (you wrongly calibrate the initial conditions of your model,
which conditions your species tolerates...)

22






CALIBRATION: Occurrence dataset

* Plot the occurrence records on the bathymetry layer

* In the provided example, do you have presence-absence data
or presence-only data ? Where is it defined in the code?

24



CALIBRATION: Occurrence dataset

SPATIAL AGGREGATION IN OCCURRENCE DATASETS
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CALIBRATION: Occurrence dataset

SPATIAL AGGREGATION IN OCCURRENCE DATASETS
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(Guillaumot et al. 2018)
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CALIBRATION: Occurrence dataset

SPATIAL AGGREGATION IN OCCURRENCE DATASETS
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CALIBRATION: Occurrence dataset

SPATIAL AGGREGATION IN OCCURRENCE DATASETS

All visited pixels for
benthic sampling

90°E

Guillaumot et al. (2019) 180° | 27



CALIBRATION: Occurrence dataset

SPATIAL AGGREGATION IN OCCURRENCE DATASETS

Aggregated occurrence data SDM predictions

Guillaumot et al. (2018)28




CALIBRATION: Occurrence dataset

SPATIAL AGGREGATION IN OCCURRENCE DATASETS

'

SPATIAL AGGREGATION CAN BE MEASURED WITH

e Moran | index
* Variogram

-> both study the relationship between the value (predictions, variance in
the result and the distance between points/pixels)
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CALIBRATION: Occurrence dataset

SPATIAL AGGREGATION IN OCCURRENCE DATASETS

(A) BEFORE SPATIAL BIAS CORRECTION | (B) AFTER SPATIAL BIAS CORRECTION

-46

-48

APPLY CORRECTIONS ! Guillaumot et al. (2018)
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CALIBRATION: Occurrence dataset

CORRECTION FOR SPATIAL BIAS

(1) Filter and sample just one occurrence per pixel
(‘pseudo-replication’, Boria et al. 2014)
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CALIBRATION: Occurrence dataset

CORRECTION FOR SPATIAL BIAS

(2) Target-background approach: sample background data
following the spatial pattern (Phillips et al. 2009)

@® Presence-only records

@ Background records
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Kernel Density Estimation (KDE)
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CALIBRATION: Occurrence dataset

CORRECTION FOR SPATIAL BIAS

(2) Target-background approach: sample background data
following the spatial pattern (Phillips et al. 2009)

You can also :

- Generate disks around the presences and sample the background data inside
these disks

- Sample background data in areas where an associated species is present

More options in Phillips et al. (2009) and in the biomod2 R package
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CALIBRATION: Occurrence dataset

CONSEQUENCES OF DATA AGGREGATION ON MODEL
VALIDATION

34



CALIBRATION: Occurrence dataset

CONSEQUENCES OF DATA AGGREGATION ON MODEL
VALIDATION

. ‘ / Presence records
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Guillaumot et al. (2019)
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CALIBRATION: Occurrence dataset

CONSEQUENCES OF DATA AGGREGATION ON MODEL
VALIDATION

Presence records
O o /
0o

O
©O o O

-90°E

() Training data
(O Test data

Guillaumot et al. (2019)
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Standard cross-validation

Guillaumot et al. (2019)

CALIBRATION: Occurrence dataset

() Training data
(O Test data

Spatial cross-validation

3 0
90°W + |8 Rl % 90°E

Method better adapted
-> independence between
test and training data
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CALIBRATION: Occurrence dataset

More cross-validation designs & comparisons in Guillaumot et al. (2019)




CALIBRATION: Occurrence dataset

And generalised to all areas in Muscarella et al. (2014)
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CALIBRATION: Occurrence dataset

Little outline of this part ! =)

-> occurrence dataset used to calibrate the models
-> introduction of the use of background data

-> datasets spatially aggregated

=> why?

=>How to measure it ?

=>Consequences on SDM predictions

=>Methods to correct it

=>Consequences on model validation & corrections

-> temporal biases
-> extrapolation
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CALIBRATION: Occurrence dataset

TEMPORAL BIASES
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CALIBRATION: Occurrence dataset

TEMPORAL BIASES

300 4

e Old & recent datasets mixed
together...

200 -
MD04
n=130

Number of occurrences

100 4
Challenger Expedition MDO03
n=33

and old expeditions

0
1872 1929 1974-1975 2015

&

=>» Changes in species preferences to environmental conditions ?
=» Population migrations ?
=» Past environmental conditions have changed ? => species niche has changed??

STRONG ASSUMPTIONS...BE CAREFUL WITH INTERPRETATION
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CALIBRATION: Occurrence dataset

TEMPORAL BIASES

300 4

e Old & recent datasets mixed
together...

200 4

Number of occurrences

100 4
Challenger Expedition

and old expeditions

* Biases linked to the number of
occurrences and addition of
new data
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CALIBRATION: Occurrence dataset

[1872-1975] n=46
Until MDO3 and MD04 campaigns

,‘e "
o
AUC= 0.883 +0.024

[1872-1993]
Until ANARE campaigns

[1872-2010] [1872-2015]
Until POKER Il campaign Until PROTEKER campaigns

»
..

i 4

AUC= 0.814+0.019

Guillaumot et al. (2018)
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CALIBRATION: Occurrence dataset

EXTRAPOLATION...
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CALIBRATION: Occurrence dataset

EXTRAPOLATION...

Presence records =) Descriptor A interval [al, a2]

> Descriptor B interval [b1, b2]

:> Descriptor Cinterval [c1, c2]

Guillaumot et al. (in prep.) 45



CALIBRATION: Occurrence dataset

EXTRAPOLATION...

Presence records =) Descriptor A interval [al, a2]

MESS: Multivariate
Environmental Similarity
Surface

(Elith et al. 2010)

Guillaumot et al. (in prep.)

> Descriptor B interval [b1, b2]

:> Descriptor Cinterval [c1, c2]

More than 60% of the
area: extrapolation !
=>To take into
consideration
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Questions ??7?




EXTRA PRACTICE

Have you spotted in your code where you can change the layer of environmental
variables on which you will project your model ? If you want for example to
make a future projection ?



