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SPECIES	DISTRIBUTION	MODELS	principle		

[set	of	environmental	variables]	

[presence	+	absence	records	]	

0	 1	

[Predicted	distribuIon]	
SDM	

Presence	/
absence?	

Layer	1	
e.g.	Depth	

Layer	2	
e.g.	T°	

Layer	3	
e.g.	Salinity	

1	 -351	 0.2	 32.4	

1	 -150	 -1.4	 32.1	

0	 -1053	 -2	 32.8	

1	 -3042	 0.3	 31.9	

…	 …	 …	 …	
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CALIBRATION:	Environmental	variables	
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CALIBRATION:	Environmental	variables	

� Number	of	environmental	variables?	

?	
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CALIBRATION:	Environmental	variables	

� Number	of	environmental	variables?	
èEcological	relevance	vs.	parcimony	
èNew	algorithms	can	deal	with	redondant/useless	informaIon	

?	
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CALIBRATION:	Environmental	variables	

Guillaumot	et	al.	in	press	
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CALIBRATION:	Environmental	variables	

� Number	of	environmental	variables?	
èEcological	relevance	vs.	parcimony	
èNew	algorithms	can	deal	with	redondant/useless	informaIon	
	
� Be	careful	with	average	informaIon		
è(relevance	of	average	environment	?	vs.	amplitude/min/max?)	

?	
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CALIBRATION:	Environmental	variables	

CORRELATION	BETWEEN	ENVIR.	VARIABLES		
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CALIBRATION:	Environmental	variables	

CORRELATION	BETWEEN	ENVIR.	VARIABLES		

->	situaIon	where	at	least	two	variables	are	related	in	a	
staIsIcal	model	
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CALIBRATION:	Environmental	variables	

CORRELATION	BETWEEN	ENVIR.	VARIABLES		

�Can	biais	modelling	outputs		

�Can	inflate	errors		

�Generally	removed	before	generaIng	the	models	

->	situaIon	where	at	least	two	variables	are	related	in	a	
staIsIcal	model	
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CALIBRATION:	Environmental	variables	

STATISTICS	TO	DEAL	WITH	COLLINEARITY	

�Spearman	correlaIon/	correlaIon	matrix		
	
�Variance	InflaIon	Factor	(VIF)	(threshold	:	10	or	5	according	to	studies)	
	
	
	
	
	
	
(more	details	in	hdps://www.staIsIcshowto.datasciencecentral.com/variance-inflaIon-factor/)	
	
�AutomaIc	removal	by	most	machine	learning	approaches		
	
	

VIF=		
1	

1-	R2	
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CALIBRATION:	Environmental	variables	

INFLUENCE	OF	SPATIAL	RESOLUTION	AND	SCALE		
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CALIBRATION:	Environmental	variables	

INFLUENCE	OF	SPATIAL	RESOLUTION	AND	SCALE		
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Barve	et	al.	2011	



CALIBRATION:	Environmental	variables	

INFLUENCE	OF	SPATIAL	RESOLUTION	AND	SCALE		

Barve	et	al.	2011	

Narrower	niches		
->	beTer	predicVve	performances		
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CALIBRATION:	Environmental	variables	

INFLUENCE	OF	MISSING	DATA	
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CALIBRATION:	Environmental	variables	

INFLUENCE	OF	MISSING	DATA	

� ParIal	coverage	of	the	informaIon	->	interpolaIon	or	not	/	missing	values		
	
	

	(°C)	

Seafloor	T°	on	the	Kerguelen	Plateau	

Surface	T°	amplitude	 Seafloor	T°	 Seafloor	T°	amplitude	

Presence	data	falling	on	missing	values		
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CALIBRATION:	Environmental	variables	

INFLUENCE	OF	MISSING	DATA	

� ParIal	coverage	of	the	informaIon	->	interpolaIon	or	not	/	missing	values		
	
� Full	night	in	winter	->	no	satellite	data	
	
	

	(°C)	

Seafloor	T°	on	the	Kerguelen	Plateau	

Surface	T°	amplitude	 Seafloor	T°	 Seafloor	T°	amplitude	

Presence	data	falling	on	missing	values		
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CALIBRATION:	Environmental	variables	

INFLUENCE	OF	MISSING	DATA	

� ParIal	coverage	of	the	informaIon	->	interpolaIon	or	not	/	missing	values		
	
� Full	night	in	winter	->	no	satellite	data	
	

� Some	algorithms	cannot	handle	missing	data	!		
è  See	tomorrow’s	course		
è Need	to	interpolate	the	data	
è Be	careful	with	the	interpretaIon	of	your	results		

13	



QuesIons	on	this	
part	???	



SPECIES	DISTRIBUTION	MODELS	principle		

[set	of	environmental	variables]	

[presence	+	absence	records	]	

0	 1	

[Predicted	distribuIon]	
SDM	

Presence	/
absence?	

Layer	1	
e.g.	Depth	

Layer	2	
e.g.	T°	

Layer	3	
e.g.	Salinity	

1	 -351	 0.2	 32.4	

1	 -150	 -1.4	 32.1	

0	 -1053	 -2	 32.8	

1	 -3042	 0.3	 31.9	

…	 …	 …	 …	
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CALIBRATION:	Occurrence	dataset	
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CALIBRATION:	Occurrence	dataset	

SDM	can	be	run	with		

�  Abundance	data	(some	algorithms)	
�  Presence-	absence	data		
�  Presence-only	data	
	
RK:	Occurrence	and	environmental	variables	selecIon	is	the	most	difficult	
task	for	running	SDMs	!		
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CALIBRATION:	Occurrence	dataset	

Generate	absence	data			
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CALIBRATION:	Occurrence	dataset	

Generate	absence	data			

�Experts	dires		
�Absences	surveys	(trawls)		
	
In	broad-scale	areas	
->	difficult	to	rely	on	absence	records		
->	above	all	if	historical	compilaIon	of	several	datasets		
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CALIBRATION:	Occurrence	dataset	

	
In	the	case	of	presence-only	data,	it	is	necessary	to	define	the	
environment	around	which	they	are	located		
	
è Sampling	of	background	data	in	the	area	to	calibrate	the	
model		
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CALIBRATION:	Occurrence	dataset	

In	broad	scale	areas,	difficult	to	rely	on	absence	data		
	
Presence-only/background	SDMs	are	less	reliable	and	powerful	
than	presence-absence	models	(Brotons	et	al.	2004,	Wisz	&	Guisan	2009)	

Occurrences	of	a	sea	star	species	in	the	SO	
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CALIBRATION:	Occurrence	dataset	

Presence	records	Halicarcinus	platanus	
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CALIBRATION:	Occurrence	dataset	

Presence	records	Halicarcinus	platanus	

absences	
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CALIBRATION:	Occurrence	dataset	

CRUCIAL	TO	EXPLORE	YOUR	DATASET	
	
� Plot	it,	study	each	occurrence	->	reliable	or	not	?		
� Georeferencing	errors	?		
	
	
è EssenIal	because	it	is	responsible	for	strong	bias	in	your	
SDM	(you	wrongly	calibrate	the	iniIal	condiIons	of	your	model,	
which	condiIons	your	species	tolerates…)	
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CALIBRATION:	Occurrence	dataset	

PRACTICE	!		

�  Plot	the	occurrence	records	on	the	bathymetry	layer		

�	In	the	provided	example,	do	you	have	presence-absence	data	
or	presence-only	data	?	Where	is	it	defined	in	the	code?		
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CALIBRATION:	Occurrence	dataset	

SPATIAL	AGGREGATION	IN	OCCURRENCE	DATASETS		
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CALIBRATION:	Occurrence	dataset	

SPATIAL	AGGREGATION	IN	OCCURRENCE	DATASETS		

Historical	collecIon		
CompilaIon	of	datasets		

Sea	urchins	in	Kerguelen		
(Guillaumot	et	al.	2018)		
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CALIBRATION:	Occurrence	dataset	

SPATIAL	AGGREGATION	IN	OCCURRENCE	DATASETS		

StaIons	sampled	
since	1872	

NON VISITED AREA
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CALIBRATION:	Occurrence	dataset	

SPATIAL	AGGREGATION	IN	OCCURRENCE	DATASETS		

All	visited	pixels	for	
benthic	sampling	

Guillaumot	et	al.	(2019)	 27	



CALIBRATION:	Occurrence	dataset	

SPATIAL	AGGREGATION	IN	OCCURRENCE	DATASETS		

SDM	predicIons		Aggregated	occurrence	data	

Guillaumot	et	al.	(2018)	28	



CALIBRATION:	Occurrence	dataset	

SPATIAL	AGGREGATION	IN	OCCURRENCE	DATASETS		

SPATIAL	AGGREGATION	CAN	BE	MEASURED	WITH		

�  Moran	I	index		
�  Variogram		
	
->	both	study	the	relaIonship	between	the	value	(predicIons,	variance	in	
the	result	and	the	distance	between	points/pixels)	
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CALIBRATION:	Occurrence	dataset	

SPATIAL	AGGREGATION	IN	OCCURRENCE	DATASETS		

Guillaumot	et	al.	(2018)	APPLY	CORRECTIONS	!	
30	



CALIBRATION:	Occurrence	dataset	

(1)	Filter	and	sample	just	one	occurrence	per	pixel		
		(‘pseudo-replicaIon’,	Boria	et	al.	2014)		

CORRECTION	FOR	SPATIAL	BIAS	
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CALIBRATION:	Occurrence	dataset	

CORRECTION	FOR	SPATIAL	BIAS	

(2)	Target-background	approach:	sample	background	data	
following	the	spaIal	padern	(Phillips	et	al.	2009)	

Presence-only	records	

Background	records	

Kernel	Density	EsImaIon	(KDE)	
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CALIBRATION:	Occurrence	dataset	

CORRECTION	FOR	SPATIAL	BIAS	

(2)	Target-background	approach:	sample	background	data	
following	the	spaIal	padern	(Phillips	et	al.	2009)	

You	can	also	:		
-  Generate	disks	around	the	presences	and	sample	the	background	data	inside	

these	disks		

-  Sample	background	data	in	areas	where	an	associated	species	is	present	

More	opIons	in	Phillips	et	al.	(2009)	and	in	the	biomod2	R	package	
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CALIBRATION:	Occurrence	dataset	

CONSEQUENCES	OF	DATA	AGGREGATION	ON	MODEL	
VALIDATION	
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CALIBRATION:	Occurrence	dataset	

CONSEQUENCES	OF	DATA	AGGREGATION	ON	MODEL	
VALIDATION	

0°	

45°E	

90°E	

135°E	

180°	

135°W	

90°W	

45°W	

Presence	records	

Guillaumot	et	al.	(2019)	
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CALIBRATION:	Occurrence	dataset	

CONSEQUENCES	OF	DATA	AGGREGATION	ON	MODEL	
VALIDATION	

Presence	records	

Guillaumot	et	al.	(2019)	

Training	data	

Test	data	
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0°	

45°E	

90°E	

135°E	

180°	

135°W	

90°W	

45°W	

Standard	cross-validaVon		

SpaVal	cross-validaVon	

Method	beTer	adapted		
->	independence	between	
test	and	training	data	

SDM	

Guillaumot	et	al.	(2019)	

Training	data	

Test	data	

CALIBRATION:	Occurrence	dataset	
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CALIBRATION:	Occurrence	dataset	

More	cross-validaIon	designs	&	comparisons		in	Guillaumot	et	al.	(2019)	
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CALIBRATION:	Occurrence	dataset	

And	generalised	to	all	areas	in	Muscarella	et	al.	(2014)	
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CALIBRATION:	Occurrence	dataset	

Lidle	outline	of	this	part	!	=)		
	
->	occurrence	dataset	used	to	calibrate	the	models		
->	introducIon	of	the	use	of	background	data		
->	datasets	spaIally	aggregated		
=>	why?	
⇒ How	to	measure	it	?		
⇒ Consequences	on	SDM	predicIons		
⇒ Methods	to	correct	it		
⇒ Consequences	on	model	validaIon	&	correcIons	

->	temporal	biases		
->	extrapolaIon			
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CALIBRATION:	Occurrence	dataset	

TEMPORAL	BIASES		
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CALIBRATION:	Occurrence	dataset	

TEMPORAL	BIASES		

è Changes	in	species	preferences	to	environmental	condiIons	?		
è PopulaIon	migraIons	?		
è	Past	environmental	condiIons	have	changed	?	=>	species	niche	has	changed??	
	

STRONG	ASSUMPTIONS…BE	CAREFUL	WITH	INTERPRETATION	

�  Old	&	recent	datasets	mixed	
together…	
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CALIBRATION:	Occurrence	dataset	

TEMPORAL	BIASES		

�  Old	&	recent	datasets	mixed	
together…	

	
�  Biases	linked	to	the	number	of	
occurrences	and	addiVon	of	
new	data		

42	



CALIBRATION:	Occurrence	dataset	

Guillaumot	et	al.	(2018)	
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CALIBRATION:	Occurrence	dataset	

EXTRAPOLATION…		
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CALIBRATION:	Occurrence	dataset	

EXTRAPOLATION…		

Descriptor	A	interval	[a1,	a2]	

Descriptor	B	interval	[b1,	b2]	

Descriptor	C	interval	[c1,	c2]	
…	

Presence	records		

Guillaumot	et	al.	(in	prep.)	 45	



CALIBRATION:	Occurrence	dataset	

EXTRAPOLATION…		

Descriptor	A	interval	[a1,	a2]	

Descriptor	B	interval	[b1,	b2]	

Descriptor	C	interval	[c1,	c2]	
…	

Presence	records		

Guillaumot	et	al.	(in	prep.)	

More	than	60%	of	the	
area:	extrapolaIon	!		

èTo	take	into	
consideraIon	

MESS:	MulIvariate	
Environmental	Similarity	
Surface		
(Elith	et	al.	2010)	
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QuesIons	???	



EXTRA	PRACTICE		
	
Have	you	spoded	in	your	code	where	you	can	change	the	layer	of	environmental	
variables	on	which	you	will	project	your	model		?	If	you	want	for	example	to	
make	a	future	projecIon	?	


