

SDM outputs, assessment and interpretation

ULB

UNIVERSITÉ LIBRE DE BRUXELLES Tuesday 3rd, September Guillaumot Charlène charleneguillaumot21@gmail.com

Introduction

SDM -> many purposes

So many possible outputs !!

➔ You can use different tools, R... packages inside R to make nice plots (ggplot2)

➔ You can also export your data to other softwares (maps in Qgis) (e.g maps...)

** Feel free to ask instructors questions on our favourite mapping tools

Probably the most famous output =)

In Presence/Absence models (response variable = 0 or 1):

Output is generally a given as a probability* (between 0 and 1) that the species is present in each pixel given the environmental conditions present in that pixel

NB. Different algorithms can give different results (e.g., MaxEnt, Random Forests, BRT)

* Note: Probabilities are not always statistical probabilities. E.g., Random Forest calculates 'probability' differently than generalized additive models (GAM)

You can threshold your results to provide a map with suitable / unsuitable predicted distribution

You can threshold your results to provide a map with suitable / unsuitable predicted distribution

Threshold: Max SSS -> maximum sensitivity + specificity threshold See Liu et al. (2013)

Guillaumot et al. (2018b)

Several thresholding procedures

-> explore the literature to find the most appropriated one !

Procedure	
MTP	Minimum Training Presence: take the value of the lowest probability on which a presence record falls. Risk: outliers !!
10%TP	Tenth percentile training presence threshold: same, but instead of taking the minimal value, take the 10% lowest value (density distribution)
SSequality	Value for which sensitivity and specificity are equal
maxSSS	Maximum Sensibility plus Specificity The sum of specificity and sensitivity is maximal
Arbitrary value	Take 0.5, 0.7 or other !

- •Go into the code and plot your predictions
- •Try to change the colors (color palette)
- •Try to binarise your results into 2 colors (non suitable= yellow;

suitable= red) with a threshold of 0.7

SDM outputs: Contribution of environmental descriptors

In which proportion does each environmental descriptor influence the model predictions ?

SDM outputs: Contribution of environmental descriptors

10 11 12 13 14 15

In which proportion does each environmental descriptor influence the model predictions?

Guillaumot et al. (2018b)

SDM outputs: Contribution of environmental descriptors

• Display the table of contributions

What is a partial dependence plot?

X axis: environmental value

Partial dependance plot -> What is the value of the distribution probability associated to each environmental value ?

1 Density probability (scaled) 0.75 0.50 0.25 0 -33.6 33.9 34.2 34.5 34.8 3 Seafloor salinity mean Seafloor temperature mean (°C)

Comparison between 4 species (4 colors)

Partial dependance plot -> What is the value of the distribution probability associated to each environmental value ?

1 Density probability (scaled) 0.75 0.50 0.25 0 -33.6 33.9 34.2 34.5 34.8 3 Seafloor salinity mean Seafloor temperature mean (°C)

Comparison between 4 species (4 colors)

How do you interprete/use these results ?

Guillaumot et al. (2018b)

- One volunteer to the board!
 - As a group, write out the code to extract X/Y data and plot the above

MODEL EVALUATION METRICS

Several metrics to evaluate your models !

More or less appropriated according to your dataset (presence-absence/ presence only data): need to be careful with interpretation

AREA UNDER THE RECEIVER OPERATED CURVE (AUC)

Evaluates the proportion of True/False positives and True/False negatives in the predictions

Sensitivity: (TP)/(TP+FN) -> presence records **correctly** predicted 1-Specificity: (FP)/(FP+TN) -> presence records **incorrectly** predicted

Sensitivity: (TP)/(TP+FN) -> presence records **correctly** predicted 1-Specificity: (FP)/(FP+TN) -> presence records **incorrectly** predicted

AREA UNDER THE RECEIVER OPERATED CURVE (AUC)

Sensitivity: (TP)/(TP+FN) -> presence records **correctly** predicted 1-Specificity: (FP)/(FP+TN) -> presence records **incorrectly** predicted

AREA UNDER THE RECEIVER OPERATED CURVE (AUC)

Sensitivity: (TP)/(TP+FN) -> presence records **correctly** predicted 1-Specificity: (FP)/(FP+TN) -> presence records **incorrectly** predicted

AREA UNDER THE RECEIVER OPERATED CURVE (AUC)

Sensitivity: (TP)/(TP+FN) -> presence records **correctly** predicted 1-Specificity: (FP)/(FP+TN) -> presence records **incorrectly** predicted

Transformed and the second sec

Sensitivity: (TP)/(TP+FN) -> presence records **correctly** predicted 1-Specificity: (FP)/(FP+TN) -> presence records **incorrectly** predicted

Sensitivity: (TP)/(TP+FN) -> presence records **correctly** predicted 1-Specificity: (FP)/(FP+TN) -> presence records **incorrectly** predicted

Sensitivity: (TP)/(TP+FN) -> presence records **correctly** predicted 1-Specificity: (FP)/(FP+TN) -> presence records **incorrectly** predicted

AREA UNDER THE RECEIVER OPERATED CURVE (AUC)

Sensitivity: (TP)/(TP+FN) -> presence records **correctly** predicted 1-Specificity: (FP)/(FP+TN) -> presence records **incorrectly** predicted

AREA UNDER THE RECEIVER OPERATED CURVE (AUC)

Sensitivity: (TP)/(TP+FN) -> presence records **correctly** predicted 1-Specificity: (FP)/(FP+TN) -> presence records **incorrectly** predicted

AREA UNDER THE RECEIVER OPERATED CURVE (AUC)

Sensitivity: (TP)/(TP+FN) -> presence records **correctly** predicted 1-Specificity: (FP)/(FP+TN) -> presence records **incorrectly** predicted

AREA UNDER THE RECEIVER OPERATED CURVE (AUC)

Sensitivity: (TP)/(TP+FN) -> presence records **correctly** predicted 1-Specificity: (FP)/(FP+TN) -> presence records **incorrectly** predicted

AREA UNDER THE RECEIVER OPERATED CURVE (AUC)

Sensitivity: (TP)/(TP+FN) -> presence records **correctly** predicted 1-Specificity: (FP)/(FP+TN) -> presence records **incorrectly** predicted

Nice explanation at https://www.youtube.com/watch?v=4jRBRDbJemM

OTHER STATISTICS....

- •True Skill Statistics: evaluation of sensitivity + specificity -1
- •Point biserial correlation: correlation between the occurrence observations & the predictions
- •Correctly classified test data: % of presence test data that correctly fall into predicted suitable areas
- -> Test data : independent from training data??
- **R Pearson:** for models generated with abundance records

OTHER STATISTICS....

- •True Skill Statistics: evaluation of sensitivity + specificity -1
- •Point biserial correlation: correlation between the occurrence observations & the predictions
- •Correctly classified test data: % of presence test data that correctly fall into predicted suitable areas
- -> Test data : independent from training data??
- R Pearson: for models generated with abundance records
 - ➔ Relevance of presence-only models ?
 - ➔ Strong sensitivity to the chosen threshold

- Get the results of AUC, TSS, COR... OF YOUR MODEL
- In the binarisation exercise, replace the threshold 0.7 by the value of the MaxSSS. Are your results strongly different?

SDM outputs: Extrapolation

EXTRAPOLATION...

Descriptor A interval [a1, a2]

Descriptor B interval [b1, b2]

Descriptor C interval [c1, c2]

. . .

Guillaumot et al. (in prep.)

EXTRAPOLATION...

Descriptor A interval [a1, a2]

Descriptor B interval [b1, b2]

Descriptor C interval [c1, c2]

MESS: Multivariate Environmental Similarity Surface (Elith et al. 2010)

Guillaumot et al. (in prep.)

More than 60% of the area: extrapolation ! →To take into consideration

See also Torres et al. (2015)

PRACTICE !

In the script, you have a section in which the code defines the area where environmental conditions are outside the range of the calibration

- Run the code and produce an extrapolated map
- Write a code to assess the proportion of the projected area that is actually extrapolation

QUESTIONS ???