

WHAT ARE SDM?

Tuesday 3rd, September Guillaumot Charlène charleneguillaumot21@gmail.com

OUTLINE OF THE COURSE

What are SDM?	[9:00 – 10:00]
Review of SDM applications	[10:15 – 11:15]
Practice ! Prepare the afternoon exercises	[11:30 – 12:30]
Run a simple SDM, understand SDM outputs	[13:30 – 15:00]
Calibration: the most important you should know	[15:15 – 17:30]
Introduction to different SDM algorithms	[09:00 – 10:00]
Questions and final practice	[10:30 –]

WHAT ARE SDM?

Tuesday 3rd, September Guillaumot Charlène charleneguillaumot21@gmail.com

SDM: Species Distribution Models

Models that evaluate the probability of a species to be distributed in an environment characterised by its own conditions

A.K.A. Climate envelope modelling, habitat modelling, environmental/ecological niche modelling

WHY DO WE USE MODELS?

- Simple and fast way to get an idea of the potential distribution of a species
- Models and outputs are generally easy to interpret

But... be careful...models are wrong!

"all models are wrong; some are useful....the practical question is how wrong do they have to be to not be useful » G. Box

Richard et al. 2013 (MariNet)

[set of environmental descriptors]

[set of environmental descriptors]

Variables // covariates

[presence + absence records]

[set of environmental variables]

SDM

[presence + absence records]

Presence / absence?	Layer 1 e.g. Depth	Layer 2 e.g. T°	Layer 3 e.g. Salinity
1	-351	0.2	32.4
1	-150	-1.4	32.1
0	-1053	-2	32.8
1	-3042	0.3	31.9

[set of environmental variables]

 $Y \sim f(X)$

Y = P/A records

X = Environmental covariates (descriptors)

Function could be linear / non-linear

[Predicted distribution]

SDM

[presence + absence records]

[set of environmental variables	[set of	environmental	l variables
---------------------------------	---------	---------------	-------------

Presence / absence?	Layer 1 e.g. Depth	Layer 2 e.g. T°	Layer 3 e.g. Salinity
1	-351	0.2	32.4
1	-150	-1.4	32.1
0	-1053	-2	32.8
1	-3042	0.3	31.9

[Predicted distribution]

- Statistical / correlative relationship
- Easy to compute
- Several algorithms = several ways of relating occurrence & envi. covariates

SDM

[presence + absence records]

[set of environmental variables]

Presence / absence?	Layer 1 e.g. Depth	Layer 2 e.g. T°	Layer 3 e.g. Salinity
1	-351	0.2	32.4
1	-150	-1.4	32.1
0	-1053	-2	32.8
1	-3042	0.3	31.9

[Predicted distribution]

INPUTS

- Presence + absence data
- Presence-only data + background
- Abundance data

SDM

[presence + absence records]

[set of environme	ntal variables]

Presence / absence?	Layer 1 e.g. Depth	Layer 2 e.g. T°	Layer 3 e.g. Salinity
1	-351	0.2	32.4
1	-150	-1.4	32.1
0	-1053	-2	32.8
1	-3042	0.3	31.9

[Predicted distribution]

OUTPUTS

- Map of probabilities of distribution
- Lot of other things! (see this afternoon!)

INTRODUCTIVE LITERATURE

- Elith et al. 2006
- Araujo & Guisan 2006
- Elith & Leathwick 2009
- Guisan & Zimmermann 2000
- Peterson 2011

[all the publications in https://github.com/SCAR/EGABIcourse19/Literature]

Have also a look at 'dismo', 'raster', 'biomod' R packages -> functions and tutorials

** A very good tutorial for SDMs in R can be found at: https://rspatial.org/sdm/index.html

RELATIONSHIP TO NICHE THEORY

How do you define an ecological niche?

Ecological niche:

All conditions that enable the species to exist indefinetly

Environmental gradient x

Ecological niche:

All conditions that enable the species to exist indefinetly

SDM ??

SDM ??

Calibrated on presence data

- -> areas where the species is actually present
- -> ABIOTIC + BIOTIC + MOVEMENT impacts

SDM ??

Calibrated on presence data

- -> areas where the species is actually present
- -> ABIOTIC + BIOTIC + MOVEMENT impacts

What the SDM actually models!

= realised niche

Theory is not that simple....
Several ways of representing the BAM diagram...

Advantages and drawbacks of SDMs

DRAWBACKS

• Definition of the occupied space of presence records strongly dependent of the sampling effort + spatial scale

Advantages and drawbacks of SDMs

DRAWBACKS

- Definition of the occupied space of presence records strongly dependent of the sampling effort + spatial scale
- Equilibrium occurrences / environment ??

DRAWBACKS

- Definition of the occupied space of presence records strongly dependent of the sampling effort + spatial scale
- Equilibrium occurrences / environment ??
- Broad scale projections: results difficult to validate

DRAWBACKS

- Definition of the occupied space of presence records strongly dependent of the sampling effort + spatial scale
- Equilibrium occurrences / environment ??
- Broad scale projections: results difficult to validate
- SDM sensitive to a lot of biases (cf. following courses)

DRAWBACKS

- Definition of the occupied space of presence records strongly dependent of the sampling effort + spatial scale
- Equilibrium occurrences / environment ??
- Broad scale projections: results difficult to validate
- SDM sensitive to a lot of biases (cf. following courses)

TAKE HOME MESSAGE:

BE CAREFUL WITH YOUR INTERPRETATIONS!

ADVANTAGES...!

- Enable to simply and quickly describe the species niche with occurrence records (simple information to get)
- Some softwares are user friendly and can help quickly provide results
- Enable to make predictions in space and time
- Results easy to interprete

Questions?

Discussion

- 1) What kinds of questions can we answer with species distribution models?
- 2) Can you think of any examples of when SDMs have made a positive impact on conservation?
- 3) Can you think of examples of how SDMs have been used to study potential impacts of climate change?
- 4) If you have ever read a paper that used SDMs, how accessible (easy to understand) were the methods? Did they include their code?

OUTLINE OF THE COURSE

What are SDM?	[9:00 – 10:00]
Review of SDM applications	[10:15 – 11:15]
Practice ! Prepare the afternoon exercises	[11:30 – 12:30]
Run a simple SDM, understand SDM outputs	[13:30 – 15:00]
Calibration: the most important you should know	[15:15 – 17:30]
Introduction to different SDM algorithms	[09:00 – 10:00]
Questions and final practice	[10:30 –]

COMPUTERS ON!

- → Have a look at the provided literature
- → Have a look at youtube tutorials to explain SDMs